Skip to main content
RNA logoLink to RNA
. 1998 May;4(5):542–550. doi: 10.1017/s1355838298972004

Matching the crystallographic structure of ribosomal protein S7 to a three-dimensional model of the 16S ribosomal RNA.

I Tanaka 1, A Nakagawa 1, H Hosaka 1, S Wakatsuki 1, F Mueller 1, R Brimacombe 1
PMCID: PMC1369638  PMID: 9582096

Abstract

Two recently published but independently derived structures, namely the X-ray crystallographic structure of ribosomal protein S7 and the "binding pocket" for this protein in a three-dimensional model of the 16S rRNA, have been correlated with one another. The known rRNA-protein interactions for S7 include a minimum binding site, a number of footprint sites, and two RNA-protein crosslink sites on the 16S rRNA, all of which form a compact group in the published 16S rRNA model (despite the fact that these interactions were not used as primary modeling constraints in building that model). The amino acids in protein S7 that are involved in the two crosslinks to 16S rRNA have also been determined in previous studies, and here we have used these sites to orient the crystallographic structure of S7 relative to its rRNA binding pocket. Some minor alterations were made to the rRNA model to improve the fit. In the resulting structure, the principal positively charged surface of the protein is in contact with the 16S rRNA, and all of the RNA-protein interaction data are satisfied. The quality of the fit gives added confidence as to the validity of the 16S rRNA model. Protein S7 is furthermore known to be crosslinked both to P site-bound tRNA and to mRNA at positions upstream of the P site codon; the matched S7-16S rRNA structure makes a prediction as to the location of this crosslink site within the protein molecule.

Full Text

The Full Text of this article is available as a PDF (625.6 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Agrawal R. K., Penczek P., Grassucci R. A., Li Y., Leith A., Nierhaus K. H., Frank J. Direct visualization of A-, P-, and E-site transfer RNAs in the Escherichia coli ribosome. Science. 1996 Feb 16;271(5251):1000–1002. doi: 10.1126/science.271.5251.1000. [DOI] [PubMed] [Google Scholar]
  2. Berglund H., Rak A., Serganov A., Garber M., Härd T. Solution structure of the ribosomal RNA binding protein S15 from Thermus thermophilus. Nat Struct Biol. 1997 Jan;4(1):20–23. doi: 10.1038/nsb0197-20. [DOI] [PubMed] [Google Scholar]
  3. Brimacombe R., Atmadja J., Stiege W., Schüler D. A detailed model of the three-dimensional structure of Escherichia coli 16 S ribosomal RNA in situ in the 30 S subunit. J Mol Biol. 1988 Jan 5;199(1):115–136. doi: 10.1016/0022-2836(88)90383-x. [DOI] [PubMed] [Google Scholar]
  4. Brimacombe R. RNA-protein interactions in the Escherichia coli ribosome. Biochimie. 1991 Jul-Aug;73(7-8):927–936. doi: 10.1016/0300-9084(91)90134-m. [DOI] [PubMed] [Google Scholar]
  5. Brimacombe R. The structure of ribosomal RNA: a three-dimensional jigsaw puzzle. Eur J Biochem. 1995 Jun 1;230(2):365–383. [PubMed] [Google Scholar]
  6. Capel M. S., Kjeldgaard M., Engelman D. M., Moore P. B. Positions of S2, S13, S16, S17, S19 and S21 in the 30 S ribosomal subunit of Escherichia coli. J Mol Biol. 1988 Mar 5;200(1):65–87. doi: 10.1016/0022-2836(88)90334-8. [DOI] [PubMed] [Google Scholar]
  7. Davies C., Ramakrishnan V., White S. W. Structural evidence for specific S8-RNA and S8-protein interactions within the 30S ribosomal subunit: ribosomal protein S8 from Bacillus stearothermophilus at 1.9 A resolution. Structure. 1996 Sep 15;4(9):1093–1104. doi: 10.1016/s0969-2126(96)00115-3. [DOI] [PubMed] [Google Scholar]
  8. Dragon F., Brakier-Gingras L. Interaction of Escherichia coli ribosomal protein S7 with 16S rRNA. Nucleic Acids Res. 1993 Mar 11;21(5):1199–1203. doi: 10.1093/nar/21.5.1199. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Dragon F., Payant C., Brakier-Gingras L. Mutational and structural analysis of the RNA binding site for Escherichia coli ribosomal protein S7. J Mol Biol. 1994 Nov 18;244(1):74–85. doi: 10.1006/jmbi.1994.1705. [DOI] [PubMed] [Google Scholar]
  10. Döring T., Mitchell P., Osswald M., Bochkariov D., Brimacombe R. The decoding region of 16S RNA; a cross-linking study of the ribosomal A, P and E sites using tRNA derivatized at position 32 in the anticodon loop. EMBO J. 1994 Jun 1;13(11):2677–2685. doi: 10.1002/j.1460-2075.1994.tb06558.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Frank J., Zhu J., Penczek P., Li Y., Srivastava S., Verschoor A., Radermacher M., Grassucci R., Lata R. K., Agrawal R. K. A model of protein synthesis based on cryo-electron microscopy of the E. coli ribosome. Nature. 1995 Aug 3;376(6539):441–444. doi: 10.1038/376441a0. [DOI] [PubMed] [Google Scholar]
  12. Hosaka H., Nakagawa A., Tanaka I., Harada N., Sano K., Kimura M., Yao M., Wakatsuki S. Ribosomal protein S7: a new RNA-binding motif with structural similarities to a DNA architectural factor. Structure. 1997 Sep 15;5(9):1199–1208. doi: 10.1016/s0969-2126(97)00270-0. [DOI] [PubMed] [Google Scholar]
  13. Kimura M. The nucleotide sequences of Bacillus stearothermophilus ribosomal protein S12 and S7 genes: comparison with the str operon of Escherichia coli. Agric Biol Chem. 1991 Jan;55(1):207–213. doi: 10.1271/bbb1961.55.207. [DOI] [PubMed] [Google Scholar]
  14. Lake J. A. Ribosomal subunit orientations determined in the monomeric ribosome by single and by double-labeling immune electron microscopy. J Mol Biol. 1982 Oct 15;161(1):89–106. doi: 10.1016/0022-2836(82)90280-7. [DOI] [PubMed] [Google Scholar]
  15. Lindahl M., Svensson L. A., Liljas A., Sedelnikova S. E., Eliseikina I. A., Fomenkova N. P., Nevskaya N., Nikonov S. V., Garber M. B., Muranova T. A. Crystal structure of the ribosomal protein S6 from Thermus thermophilus. EMBO J. 1994 Mar 15;13(6):1249–1254. doi: 10.2210/pdb1ris/pdb. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Mueller F., Brimacombe R. A new model for the three-dimensional folding of Escherichia coli 16 S ribosomal RNA. I. Fitting the RNA to a 3D electron microscopic map at 20 A. J Mol Biol. 1997 Aug 29;271(4):524–544. doi: 10.1006/jmbi.1997.1210. [DOI] [PubMed] [Google Scholar]
  17. Mueller F., Brimacombe R. A new model for the three-dimensional folding of Escherichia coli 16 S ribosomal RNA. II. The RNA-protein interaction data. J Mol Biol. 1997 Aug 29;271(4):545–565. doi: 10.1006/jmbi.1997.1211. [DOI] [PubMed] [Google Scholar]
  18. Mueller F., Stark H., van Heel M., Rinke-Appel J., Brimacombe R. A new model for the three-dimensional folding of Escherichia coli 16 S ribosomal RNA. III. The topography of the functional centre. J Mol Biol. 1997 Aug 29;271(4):566–587. doi: 10.1006/jmbi.1997.1212. [DOI] [PubMed] [Google Scholar]
  19. Möller K., Zwieb C., Brimacombe R. Identification of the oligonucleotide and oligopeptide involved in an RNA--protein crosslink induced by ultraviolet irradiation of Escherichia coli 30 S ribosomal subunits. J Mol Biol. 1978 Dec 15;126(3):489–506. doi: 10.1016/0022-2836(78)90055-4. [DOI] [PubMed] [Google Scholar]
  20. Nicholls A., Sharp K. A., Honig B. Protein folding and association: insights from the interfacial and thermodynamic properties of hydrocarbons. Proteins. 1991;11(4):281–296. doi: 10.1002/prot.340110407. [DOI] [PubMed] [Google Scholar]
  21. Nissen P., Kjeldgaard M., Thirup S., Polekhina G., Reshetnikova L., Clark B. F., Nyborg J. Crystal structure of the ternary complex of Phe-tRNAPhe, EF-Tu, and a GTP analog. Science. 1995 Dec 1;270(5241):1464–1472. doi: 10.1126/science.270.5241.1464. [DOI] [PubMed] [Google Scholar]
  22. Nowotny V., Nierhaus K. H. Assembly of the 30S subunit from Escherichia coli ribosomes occurs via two assembly domains which are initiated by S4 and S7. Biochemistry. 1988 Sep 6;27(18):7051–7055. doi: 10.1021/bi00418a057. [DOI] [PubMed] [Google Scholar]
  23. Powers T., Noller H. F. Hydroxyl radical footprinting of ribosomal proteins on 16S rRNA. RNA. 1995 Apr;1(2):194–209. [PMC free article] [PubMed] [Google Scholar]
  24. Ramakrishnan V., White S. W. The structure of ribosomal protein S5 reveals sites of interaction with 16S rRNA. Nature. 1992 Aug 27;358(6389):768–771. doi: 10.1038/358768a0. [DOI] [PubMed] [Google Scholar]
  25. Reinbolt J., Tritsch D. The primary structure of ribosomal protein S7 from E. coli strains K and B. FEBS Lett. 1978 Jul 15;91(2):297–301. doi: 10.1016/0014-5793(78)81196-x. [DOI] [PubMed] [Google Scholar]
  26. Rinke-Appel J., Jünke N., Brimacombe R., Lavrik I., Dokudovskaya S., Dontsova O., Bogdanov A. Contacts between 16S ribosomal RNA and mRNA, within the spacer region separating the AUG initiator codon and the Shine-Dalgarno sequence; a site-directed cross-linking study. Nucleic Acids Res. 1994 Aug 11;22(15):3018–3025. doi: 10.1093/nar/22.15.3018. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Stade K., Rinke-Appel J., Brimacombe R. Site-directed cross-linking of mRNA analogues to the Escherichia coli ribosome; identification of 30S ribosomal components that can be cross-linked to the mRNA at various points 5' with respect to the decoding site. Nucleic Acids Res. 1989 Dec 11;17(23):9889–9908. doi: 10.1093/nar/17.23.9889. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Stark H., Mueller F., Orlova E. V., Schatz M., Dube P., Erdemir T., Zemlin F., Brimacombe R., van Heel M. The 70S Escherichia coli ribosome at 23 A resolution: fitting the ribosomal RNA. Structure. 1995 Aug 15;3(8):815–821. doi: 10.1016/s0969-2126(01)00216-7. [DOI] [PubMed] [Google Scholar]
  29. Stark H., Orlova E. V., Rinke-Appel J., Jünke N., Mueller F., Rodnina M., Wintermeyer W., Brimacombe R., van Heel M. Arrangement of tRNAs in pre- and posttranslocational ribosomes revealed by electron cryomicroscopy. Cell. 1997 Jan 10;88(1):19–28. doi: 10.1016/s0092-8674(00)81854-1. [DOI] [PubMed] [Google Scholar]
  30. Stark H., Rodnina M. V., Rinke-Appel J., Brimacombe R., Wintermeyer W., van Heel M. Visualization of elongation factor Tu on the Escherichia coli ribosome. Nature. 1997 Sep 25;389(6649):403–406. doi: 10.1038/38770. [DOI] [PubMed] [Google Scholar]
  31. Stern S., Weiser B., Noller H. F. Model for the three-dimensional folding of 16 S ribosomal RNA. J Mol Biol. 1988 Nov 20;204(2):447–481. doi: 10.1016/0022-2836(88)90588-8. [DOI] [PubMed] [Google Scholar]
  32. Stöffler G., Stöffler-Meilicke M. Immunoelectron microscopy of ribosomes. Annu Rev Biophys Bioeng. 1984;13:303–330. doi: 10.1146/annurev.bb.13.060184.001511. [DOI] [PubMed] [Google Scholar]
  33. Urlaub H., Kruft V., Bischof O., Müller E. C., Wittmann-Liebold B. Protein-rRNA binding features and their structural and functional implications in ribosomes as determined by cross-linking studies. EMBO J. 1995 Sep 15;14(18):4578–4588. doi: 10.1002/j.1460-2075.1995.tb00137.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Urlaub H., Thiede B., Müller E. C., Brimacombe R., Wittmann-Liebold B. Identification and sequence analysis of contact sites between ribosomal proteins and rRNA in Escherichia coli 30 S subunits by a new approach using matrix-assisted laser desorption/ionization-mass spectrometry combined with N-terminal microsequencing. J Biol Chem. 1997 Jun 6;272(23):14547–14555. doi: 10.1074/jbc.272.23.14547. [DOI] [PubMed] [Google Scholar]
  35. Wimberly B. T., White S. W., Ramakrishnan V. The structure of ribosomal protein S7 at 1.9 A resolution reveals a beta-hairpin motif that binds double-stranded nucleic acids. Structure. 1997 Sep 15;5(9):1187–1198. doi: 10.1016/s0969-2126(97)00269-4. [DOI] [PubMed] [Google Scholar]

Articles from RNA are provided here courtesy of The RNA Society

RESOURCES