Abstract
Unlike most eukaryotic mRNAs studied to date, Xenopus serum albumin mRNA has a short (17-residue), discrete poly(A) tail. We recently reported that this short poly(A) tail results from regulation of the length of poly(A) on albumin pre-mRNA. The purpose of the present study was to locate the cis-acting element responsible for this, the poly(A)-limiting element or PLE. An albumin minigene consisting of albumin cDNA joined in exon 13 to the 3' end of the albumin gene produced mRNA with <20 nt poly(A) when transfected into mouse fibroblasts. This result indicates both that cis-acting sequences that regulate poly(A) length are within this construct, and that nuclear regulation of poly(A) length is conserved between vertebrates. Poly(A) length regulation was retained after replacing the terminal 53 bp and 3' flanking region of the albumin gene with a synthetic polyadenylation element (SPA). Conversely, fusing albumin gene sequence spanning the terminal 53 bp of the albumin gene and 3' flanking sequence onto the human beta-globin gene yielded globin mRNA with a 200-residue poly(A)tail. These data indicate that the PLE resides upstream of the sequence elements involved in albumin pre-mRNA 3' processing. Poly(A) length regulation was restored upon fusing a segment bearing albumin intron 14, exon 15, and 3' flanking sequence onto the beta-globin gene. We demonstrate that exon 15 contains two PLEs that can act independently to regulate the length of poly(A).
Full Text
The Full Text of this article is available as a PDF (1,016.3 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Baurén G., Wieslander L. Splicing of Balbiani ring 1 gene pre-mRNA occurs simultaneously with transcription. Cell. 1994 Jan 14;76(1):183–192. doi: 10.1016/0092-8674(94)90182-1. [DOI] [PubMed] [Google Scholar]
- Bienroth S., Keller W., Wahle E. Assembly of a processive messenger RNA polyadenylation complex. EMBO J. 1993 Feb;12(2):585–594. doi: 10.1002/j.1460-2075.1993.tb05690.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Caponigro G., Parker R. Multiple functions for the poly(A)-binding protein in mRNA decapping and deadenylation in yeast. Genes Dev. 1995 Oct 1;9(19):2421–2432. doi: 10.1101/gad.9.19.2421. [DOI] [PubMed] [Google Scholar]
- Colgan D. F., Murthy K. G., Prives C., Manley J. L. Cell-cycle related regulation of poly(A) polymerase by phosphorylation. Nature. 1996 Nov 21;384(6606):282–285. doi: 10.1038/384282a0. [DOI] [PubMed] [Google Scholar]
- Cooke C., Alwine J. C. The cap and the 3' splice site similarly affect polyadenylation efficiency. Mol Cell Biol. 1996 Jun;16(6):2579–2584. doi: 10.1128/mcb.16.6.2579. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Dompenciel R. E., Garnepudi V. R., Schoenberg D. R. Purification and characterization of an estrogen-regulated Xenopus liver polysomal nuclease involved in the selective destabilization of albumin mRNA. J Biol Chem. 1995 Mar 17;270(11):6108–6118. doi: 10.1074/jbc.270.11.6108. [DOI] [PubMed] [Google Scholar]
- Gilmartin G. M., Fleming E. S., Oetjen J., Graveley B. R. CPSF recognition of an HIV-1 mRNA 3'-processing enhancer: multiple sequence contacts involved in poly(A) site definition. Genes Dev. 1995 Jan 1;9(1):72–83. doi: 10.1101/gad.9.1.72. [DOI] [PubMed] [Google Scholar]
- Gunderson S. I., Beyer K., Martin G., Keller W., Boelens W. C., Mattaj L. W. The human U1A snRNP protein regulates polyadenylation via a direct interaction with poly(A) polymerase. Cell. 1994 Feb 11;76(3):531–541. doi: 10.1016/0092-8674(94)90116-3. [DOI] [PubMed] [Google Scholar]
- Lagnado C. A., Brown C. Y., Goodall G. J. AUUUA is not sufficient to promote poly(A) shortening and degradation of an mRNA: the functional sequence within AU-rich elements may be UUAUUUA(U/A)(U/A). Mol Cell Biol. 1994 Dec;14(12):7984–7995. doi: 10.1128/mcb.14.12.7984. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Levitt N., Briggs D., Gil A., Proudfoot N. J. Definition of an efficient synthetic poly(A) site. Genes Dev. 1989 Jul;3(7):1019–1025. doi: 10.1101/gad.3.7.1019. [DOI] [PubMed] [Google Scholar]
- Lutz C. S., Alwine J. C. Direct interaction of the U1 snRNP-A protein with the upstream efficiency element of the SV40 late polyadenylation signal. Genes Dev. 1994 Mar 1;8(5):576–586. doi: 10.1101/gad.8.5.576. [DOI] [PubMed] [Google Scholar]
- Lutz C. S., Murthy K. G., Schek N., O'Connor J. P., Manley J. L., Alwine J. C. Interaction between the U1 snRNP-A protein and the 160-kD subunit of cleavage-polyadenylation specificity factor increases polyadenylation efficiency in vitro. Genes Dev. 1996 Feb 1;10(3):325–337. doi: 10.1101/gad.10.3.325. [DOI] [PubMed] [Google Scholar]
- MacDonald C. C., Wilusz J., Shenk T. The 64-kilodalton subunit of the CstF polyadenylation factor binds to pre-mRNAs downstream of the cleavage site and influences cleavage site location. Mol Cell Biol. 1994 Oct;14(10):6647–6654. doi: 10.1128/mcb.14.10.6647. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Murthy K. G., Manley J. L. Characterization of the multisubunit cleavage-polyadenylation specificity factor from calf thymus. J Biol Chem. 1992 Jul 25;267(21):14804–14811. [PubMed] [Google Scholar]
- Nesic D., Maquat L. E. Upstream introns influence the efficiency of final intron removal and RNA 3'-end formation. Genes Dev. 1994 Feb 1;8(3):363–375. doi: 10.1101/gad.8.3.363. [DOI] [PubMed] [Google Scholar]
- Nesic D., Zhang J., Maquat L. E. Lack of an effect of the efficiency of RNA 3'-end formation on the efficiency of removal of either the final or the penultimate intron in intact cells. Mol Cell Biol. 1995 Jan;15(1):488–496. doi: 10.1128/mcb.15.1.488. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Niwa M., Berget S. M. Mutation of the AAUAAA polyadenylation signal depresses in vitro splicing of proximal but not distal introns. Genes Dev. 1991 Nov;5(11):2086–2095. doi: 10.1101/gad.5.11.2086. [DOI] [PubMed] [Google Scholar]
- Niwa M., Rose S. D., Berget S. M. In vitro polyadenylation is stimulated by the presence of an upstream intron. Genes Dev. 1990 Sep;4(9):1552–1559. doi: 10.1101/gad.4.9.1552. [DOI] [PubMed] [Google Scholar]
- Paillard L., Omilli F., Legagneux V., Bassez T., Maniey D., Osborne H. B. EDEN and EDEN-BP, a cis element and an associated factor that mediate sequence-specific mRNA deadenylation in Xenopus embryos. EMBO J. 1998 Jan 2;17(1):278–287. doi: 10.1093/emboj/17.1.278. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Pastori R. L., Moskaitis J. E., Buzek S. W., Schoenberg D. R. Coordinate estrogen-regulated instability of serum protein-coding messenger RNAs in Xenopus laevis. Mol Endocrinol. 1991 Apr;5(4):461–468. doi: 10.1210/mend-5-4-461. [DOI] [PubMed] [Google Scholar]
- Pastori R. L., Moskaitis J. E., Buzek S. W., Schoenberg D. R. Differential regulation and polyadenylation of transferrin mRNA in Xenopus liver and oviduct. J Steroid Biochem Mol Biol. 1992 Aug;42(7):649–657. doi: 10.1016/0960-0760(92)90105-r. [DOI] [PubMed] [Google Scholar]
- Pastori R. L., Moskaitis J. E., Schoenberg D. R. Estrogen-induced ribonuclease activity in Xenopus liver. Biochemistry. 1991 Oct 29;30(43):10490–10498. doi: 10.1021/bi00107a018. [DOI] [PubMed] [Google Scholar]
- Rao M. N., Chernokalskaya E., Schoenberg D. R. Regulated nuclear polyadenylation of Xenopus albumin pre-mRNA. Nucleic Acids Res. 1996 Oct 15;24(20):4078–4083. doi: 10.1093/nar/24.20.4078. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Riegel A. T., Martin M. B., Schoenberg D. R. Transcriptional and post-transcriptional inhibition of albumin gene expression by estrogen in Xenopus liver. Mol Cell Endocrinol. 1986 Mar;44(3):201–209. doi: 10.1016/0303-7207(86)90125-5. [DOI] [PubMed] [Google Scholar]
- Rüegsegger U., Beyer K., Keller W. Purification and characterization of human cleavage factor Im involved in the 3' end processing of messenger RNA precursors. J Biol Chem. 1996 Mar 15;271(11):6107–6113. doi: 10.1074/jbc.271.11.6107. [DOI] [PubMed] [Google Scholar]
- Schiavi S. C., Wellington C. L., Shyu A. B., Chen C. Y., Greenberg M. E., Belasco J. G. Multiple elements in the c-fos protein-coding region facilitate mRNA deadenylation and decay by a mechanism coupled to translation. J Biol Chem. 1994 Feb 4;269(5):3441–3448. [PubMed] [Google Scholar]
- Schoenberg D. R., Moskaitis J. E., Smith L. H., Jr, Pastori R. L. Extranuclear estrogen-regulated destabilization of Xenopus laevis serum albumin mRNA. Mol Endocrinol. 1989 May;3(5):805–814. doi: 10.1210/mend-3-5-805. [DOI] [PubMed] [Google Scholar]
- Shyu A. B., Belasco J. G., Greenberg M. E. Two distinct destabilizing elements in the c-fos message trigger deadenylation as a first step in rapid mRNA decay. Genes Dev. 1991 Feb;5(2):221–231. doi: 10.1101/gad.5.2.221. [DOI] [PubMed] [Google Scholar]
- Stoeckle M. Y., Guan L. High-resolution analysis of gro alpha mRNA poly(A) shortening: regulation by interleukin-1 beta. Nucleic Acids Res. 1993 Apr 11;21(7):1613–1617. doi: 10.1093/nar/21.7.1613. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Takagaki Y., MacDonald C. C., Shenk T., Manley J. L. The human 64-kDa polyadenylylation factor contains a ribonucleoprotein-type RNA binding domain and unusual auxiliary motifs. Proc Natl Acad Sci U S A. 1992 Feb 15;89(4):1403–1407. doi: 10.1073/pnas.89.4.1403. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wahle E. A novel poly(A)-binding protein acts as a specificity factor in the second phase of messenger RNA polyadenylation. Cell. 1991 Aug 23;66(4):759–768. doi: 10.1016/0092-8674(91)90119-j. [DOI] [PubMed] [Google Scholar]
- Wahle E. Poly(A) tail length control is caused by termination of processive synthesis. J Biol Chem. 1995 Feb 10;270(6):2800–2808. doi: 10.1074/jbc.270.6.2800. [DOI] [PubMed] [Google Scholar]
- Zhao W., Manley J. L. Complex alternative RNA processing generates an unexpected diversity of poly(A) polymerase isoforms. Mol Cell Biol. 1996 May;16(5):2378–2386. doi: 10.1128/mcb.16.5.2378. [DOI] [PMC free article] [PubMed] [Google Scholar]
- van Gelder C. W., Gunderson S. I., Jansen E. J., Boelens W. C., Polycarpou-Schwarz M., Mattaj I. W., van Venrooij W. J. A complex secondary structure in U1A pre-mRNA that binds two molecules of U1A protein is required for regulation of polyadenylation. EMBO J. 1993 Dec 15;12(13):5191–5200. doi: 10.1002/j.1460-2075.1993.tb06214.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
