Skip to main content
RNA logoLink to RNA
. 1998 Jul;4(7):856–869. doi: 10.1017/s1355838298980396

The yeast tRNA:pseudouridine synthase Pus1p displays a multisite substrate specificity.

Y Motorin 1, G Keith 1, C Simon 1, D Foiret 1, G Simos 1, E Hurt 1, H Grosjean 1
PMCID: PMC1369665  PMID: 9671058

Abstract

We have previously shown that the yeast gene PUS1 codes for a tRNA:pseudouridine synthase and that recombinant Pus1p catalyzes, in an intron-dependent way, the formation of psi34 and psi36 in the anticodon loop of the yeast minor tRNA(Ile) in vitro (Simos G et al., 1996, EMBO J 15:2270-2284). Using a set of T7 transcripts of different tRNA genes, we now demonstrate that yeast pseudouridine synthase 1 catalyzes in vitro pseudouridine formation at positions 27 and/or 28 in several yeast cytoplasmic tRNAs and at position 35 in the intron-containing tRNA(Tyr) (anticodon GUA). Thus, Pus1p not only displays a broad specificity toward the RNA substrates, but is also capable of catalyzing the pseudouridine (psi) formation at distinct noncontiguous sites within the same tRNA molecule. The cell-free extract prepared from the yeast strain bearing disrupted gene PUS1 is unable to catalyze the formation of psi27, psi28, psi34, and psi36 in vitro, however, psi35 formation in the intron-containing tRNA(Tyr)(GUA) remains unaffected. Thus, in yeast, only one gene product accounts for tRNA pseudouridylation at positions 27, 28, 34, and 36, whereas for position 35 in tRNA(Tyr), another site-specific tRNA:pseudouridine synthase with overlapping specificity exists. Mapping of pseudouridine residues present in various tRNAs extracted from the PUS1-disrupted strain confirms the in vitro data obtained with the recombinant Pus1p. In addition, they suggest that Pus1p is implicated in modification at positions U26, U65, and U67 in vivo.

Full Text

The Full Text of this article is available as a PDF (569.0 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Akama K., Nass A., Junker V., Beier H. Characterization of nuclear tRNA(Tyr) introns: their evolution from red algae to higher plants. FEBS Lett. 1997 Nov 10;417(2):213–218. doi: 10.1016/s0014-5793(97)01288-x. [DOI] [PubMed] [Google Scholar]
  2. Arluison V., Hountondji C., Robert B., Grosjean H. Transfer RNA-pseudouridine synthetase Pus1 of Saccharomyces cerevisiae contains one atom of zinc essential for its native conformation and tRNA recognition. Biochemistry. 1998 May 19;37(20):7268–7276. doi: 10.1021/bi972671o. [DOI] [PubMed] [Google Scholar]
  3. Arts G. J., Fornerod M., Mattaj I. W. Identification of a nuclear export receptor for tRNA. Curr Biol. 1998 Mar 12;8(6):305–314. doi: 10.1016/s0960-9822(98)70130-7. [DOI] [PubMed] [Google Scholar]
  4. Auxilien S., Crain P. F., Trewyn R. W., Grosjean H. Mechanism, specificity and general properties of the yeast enzyme catalysing the formation of inosine 34 in the anticodon of transfer RNA. J Mol Biol. 1996 Oct 4;262(4):437–458. doi: 10.1006/jmbi.1996.0527. [DOI] [PubMed] [Google Scholar]
  5. Bakin A., Kowalak J. A., McCloskey J. A., Ofengand J. The single pseudouridine residue in Escherichia coli 16S RNA is located at position 516. Nucleic Acids Res. 1994 Sep 11;22(18):3681–3684. doi: 10.1093/nar/22.18.3681. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Bakin A., Ofengand J. Four newly located pseudouridylate residues in Escherichia coli 23S ribosomal RNA are all at the peptidyltransferase center: analysis by the application of a new sequencing technique. Biochemistry. 1993 Sep 21;32(37):9754–9762. doi: 10.1021/bi00088a030. [DOI] [PubMed] [Google Scholar]
  7. Bakin A., Ofengand J. Mapping of the 13 pseudouridine residues in Saccharomyces cerevisiae small subunit ribosomal RNA to nucleotide resolution. Nucleic Acids Res. 1995 Aug 25;23(16):3290–3294. doi: 10.1093/nar/23.16.3290. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Becker H. F., Motorin Y., Planta R. J., Grosjean H. The yeast gene YNL292w encodes a pseudouridine synthase (Pus4) catalyzing the formation of psi55 in both mitochondrial and cytoplasmic tRNAs. Nucleic Acids Res. 1997 Nov 15;25(22):4493–4499. doi: 10.1093/nar/25.22.4493. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Becker H. F., Motorin Y., Sissler M., Florentz C., Grosjean H. Major identity determinants for enzymatic formation of ribothymidine and pseudouridine in the T psi-loop of yeast tRNAs. J Mol Biol. 1997 Dec 12;274(4):505–518. doi: 10.1006/jmbi.1997.1417. [DOI] [PubMed] [Google Scholar]
  10. Bousquet-Antonelli C., Henry Y., G'elugne J. P., Caizergues-Ferrer M., Kiss T. A small nucleolar RNP protein is required for pseudouridylation of eukaryotic ribosomal RNAs. EMBO J. 1997 Aug 1;16(15):4770–4776. doi: 10.1093/emboj/16.15.4770. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Fradin A., Gruhl H., Feldmann H. Mapping of yeast tRNAs by two-dimensional electrophoresis on polyacrylamide gels. FEBS Lett. 1975 Feb 1;50(2):185–189. doi: 10.1016/0014-5793(75)80485-6. [DOI] [PubMed] [Google Scholar]
  12. Ganot P., Bortolin M. L., Kiss T. Site-specific pseudouridine formation in preribosomal RNA is guided by small nucleolar RNAs. Cell. 1997 May 30;89(5):799–809. doi: 10.1016/s0092-8674(00)80263-9. [DOI] [PubMed] [Google Scholar]
  13. Grosjean H., Szweykowska-Kulinska Z., Motorin Y., Fasiolo F., Simos G. Intron-dependent enzymatic formation of modified nucleosides in eukaryotic tRNAs: a review. Biochimie. 1997 May;79(5):293–302. doi: 10.1016/s0300-9084(97)83517-1. [DOI] [PubMed] [Google Scholar]
  14. Gu X., Yu M., Ivanetich K. M., Santi D. V. Molecular recognition of tRNA by tRNA pseudouridine 55 synthase. Biochemistry. 1998 Jan 6;37(1):339–343. doi: 10.1021/bi971590p. [DOI] [PubMed] [Google Scholar]
  15. Gustafsson C., Reid R., Greene P. J., Santi D. V. Identification of new RNA modifying enzymes by iterative genome search using known modifying enzymes as probes. Nucleic Acids Res. 1996 Oct 1;24(19):3756–3762. doi: 10.1093/nar/24.19.3756. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Heitzler J., Maréchal-Drouard L., Dirheimer G., Keith G. Use of a dot blot hybridization method for identification of pure tRNA species on different membranes. Biochim Biophys Acta. 1992 Feb 11;1129(3):273–277. doi: 10.1016/0167-4781(92)90503-r. [DOI] [PubMed] [Google Scholar]
  17. Huang L., Pookanjanatavip M., Gu X., Santi D. V. A conserved aspartate of tRNA pseudouridine synthase is essential for activity and a probable nucleophilic catalyst. Biochemistry. 1998 Jan 6;37(1):344–351. doi: 10.1021/bi971874+. [DOI] [PubMed] [Google Scholar]
  18. Jiang H. Q., Motorin Y., Jin Y. X., Grosjean H. Pleiotropic effects of intron removal on base modification pattern of yeast tRNAPhe: an in vitro study. Nucleic Acids Res. 1997 Jul 15;25(14):2694–2701. doi: 10.1093/nar/25.14.2694. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Johnson P. F., Abelson J. The yeast tRNATyr gene intron is essential for correct modification of its tRNA product. Nature. 1983 Apr 21;302(5910):681–687. doi: 10.1038/302681a0. [DOI] [PubMed] [Google Scholar]
  20. Kammen H. O., Marvel C. C., Hardy L., Penhoet E. E. Purification, structure, and properties of Escherichia coli tRNA pseudouridine synthase I. J Biol Chem. 1988 Feb 15;263(5):2255–2263. [PubMed] [Google Scholar]
  21. Koonin E. V. Pseudouridine synthases: four families of enzymes containing a putative uridine-binding motif also conserved in dUTPases and dCTP deaminases. Nucleic Acids Res. 1996 Jun 15;24(12):2411–2415. doi: 10.1093/nar/24.12.2411. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Kutay U., Lipowsky G., Izaurralde E., Bischoff F. R., Schwarzmaier P., Hartmann E., Görlich D. Identification of a tRNA-specific nuclear export receptor. Mol Cell. 1998 Feb;1(3):359–369. doi: 10.1016/s1097-2765(00)80036-2. [DOI] [PubMed] [Google Scholar]
  23. Lafontaine D. L., Bousquet-Antonelli C., Henry Y., Caizergues-Ferrer M., Tollervey D. The box H + ACA snoRNAs carry Cbf5p, the putative rRNA pseudouridine synthase. Genes Dev. 1998 Feb 15;12(4):527–537. doi: 10.1101/gad.12.4.527. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Lecointe F., Simos G., Sauer A., Hurt E. C., Motorin Y., Grosjean H. Characterization of yeast protein Deg1 as pseudouridine synthase (Pus3) catalyzing the formation of psi 38 and psi 39 in tRNA anticodon loop. J Biol Chem. 1998 Jan 16;273(3):1316–1323. doi: 10.1074/jbc.273.3.1316. [DOI] [PubMed] [Google Scholar]
  25. Ni J., Tien A. L., Fournier M. J. Small nucleolar RNAs direct site-specific synthesis of pseudouridine in ribosomal RNA. Cell. 1997 May 16;89(4):565–573. doi: 10.1016/s0092-8674(00)80238-x. [DOI] [PubMed] [Google Scholar]
  26. Nurse K., Wrzesinski J., Bakin A., Lane B. G., Ofengand J. Purification, cloning, and properties of the tRNA psi 55 synthase from Escherichia coli. RNA. 1995 Mar;1(1):102–112. [PMC free article] [PubMed] [Google Scholar]
  27. Perret V., Garcia A., Puglisi J., Grosjean H., Ebel J. P., Florentz C., Giegé R. Conformation in solution of yeast tRNA(Asp) transcripts deprived of modified nucleotides. Biochimie. 1990 Oct;72(10):735–743. doi: 10.1016/0300-9084(90)90158-d. [DOI] [PubMed] [Google Scholar]
  28. Sampson J. R., DiRenzo A. B., Behlen L. S., Uhlenbeck O. C. Role of the tertiary nucleotides in the interaction of yeast phenylalanine tRNA with its cognate synthetase. Biochemistry. 1990 Mar 13;29(10):2523–2532. doi: 10.1021/bi00462a014. [DOI] [PubMed] [Google Scholar]
  29. Samuelsson T., Olsson M. Transfer RNA pseudouridine synthases in Saccharomyces cerevisiae. J Biol Chem. 1990 May 25;265(15):8782–8787. [PubMed] [Google Scholar]
  30. Senger B., Despons L., Walter P., Fasiolo F. The anticodon triplet is not sufficient to confer methionine acceptance to a transfer RNA. Proc Natl Acad Sci U S A. 1992 Nov 15;89(22):10768–10771. doi: 10.1073/pnas.89.22.10768. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Shen W. C., Selvakumar D., Stanford D. R., Hopper A. K. The Saccharomyces cerevisiae LOS1 gene involved in pre-tRNA splicing encodes a nuclear protein that behaves as a component of the nuclear matrix. J Biol Chem. 1993 Sep 15;268(26):19436–19444. [PubMed] [Google Scholar]
  32. Simos G., Sauer A., Fasiolo F., Hurt E. C. A conserved domain within Arc1p delivers tRNA to aminoacyl-tRNA synthetases. Mol Cell. 1998 Jan;1(2):235–242. doi: 10.1016/s1097-2765(00)80024-6. [DOI] [PubMed] [Google Scholar]
  33. Simos G., Tekotte H., Grosjean H., Segref A., Sharma K., Tollervey D., Hurt E. C. Nuclear pore proteins are involved in the biogenesis of functional tRNA. EMBO J. 1996 May 1;15(9):2270–2284. [PMC free article] [PubMed] [Google Scholar]
  34. Simos G., Tekotte H., Grosjean H., Segref A., Sharma K., Tollervey D., Hurt E. C. Nuclear pore proteins are involved in the biogenesis of functional tRNA. EMBO J. 1996 May 1;15(9):2270–2284. [PMC free article] [PubMed] [Google Scholar]
  35. Smith C. M., Steitz J. A. Sno storm in the nucleolus: new roles for myriad small RNPs. Cell. 1997 May 30;89(5):669–672. doi: 10.1016/s0092-8674(00)80247-0. [DOI] [PubMed] [Google Scholar]
  36. Sprinzl M., Horn C., Brown M., Ioudovitch A., Steinberg S. Compilation of tRNA sequences and sequences of tRNA genes. Nucleic Acids Res. 1998 Jan 1;26(1):148–153. doi: 10.1093/nar/26.1.148. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Swerdlow H., Guthrie C. Structure of intron-containing tRNA precursors. Analysis of solution conformation using chemical and enzymatic probes. J Biol Chem. 1984 Apr 25;259(8):5197–5207. [PubMed] [Google Scholar]
  38. Szweykowska-Kulinska Z., Beier H. Sequence and structure requirements for the biosynthesis of pseudouridine (psi 35) in plant pre-tRNA(Tyr). EMBO J. 1992 May;11(5):1907–1912. doi: 10.1002/j.1460-2075.1992.tb05243.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  39. Szweykowska-Kulinska Z., Krajewski J., Wypijewski K. Mutations of Arabidopsis thaliana pre-tRNA(Tyr) affecting pseudouridylation of U35. Biochim Biophys Acta. 1995 Oct 17;1264(1):87–92. doi: 10.1016/0167-4781(95)00129-5. [DOI] [PubMed] [Google Scholar]
  40. Szweykowska-Kulinska Z., Senger B., Keith G., Fasiolo F., Grosjean H. Intron-dependent formation of pseudouridines in the anticodon of Saccharomyces cerevisiae minor tRNA(Ile). EMBO J. 1994 Oct 3;13(19):4636–4644. doi: 10.1002/j.1460-2075.1994.tb06786.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  41. Wilhelm M. L., Baranowski W., Keith G., Wilhelm F. X. Rapid transfer of small RNAs from a polyacrylamide gel onto a nylon membrane using a gel dryer. Nucleic Acids Res. 1992 Aug 11;20(15):4106–4106. doi: 10.1093/nar/20.15.4106. [DOI] [PMC free article] [PubMed] [Google Scholar]
  42. Wrzesinski J., Nurse K., Bakin A., Lane B. G., Ofengand J. A dual-specificity pseudouridine synthase: an Escherichia coli synthase purified and cloned on the basis of its specificity for psi 746 in 23S RNA is also specific for psi 32 in tRNA(phe). RNA. 1995 Jun;1(4):437–448. [PMC free article] [PubMed] [Google Scholar]

Articles from RNA are provided here courtesy of The RNA Society

RESOURCES