Skip to main content
RNA logoLink to RNA
. 1998 Aug;4(8):928–936. doi: 10.1017/s135583829898058x

tRNA nucleotide 47: an evolutionary enigma.

N Cermakian 1, W H McClain 1, R Cedergren 1
PMCID: PMC1369670  PMID: 9701284

Abstract

A previous analysis of tRNA sequences suggested a correlation between the absence of a nucleotide at position 47 (nt 47) in the extra loop and the presence of a U13:G22 base pair in the D-stem. We have evaluated the significance of this correlation by determining the in vivo activity of tRNAs containing either a C13:G22 or a U13:G22 pair in tRNA molecules with or without nt 47. Although this correlation might reflect some malfunction of tRNAs lacking nt 47, but containing the C13:G22, assays of the in vivo suppressor activity showed that this tRNA is actually more active than the tRNA with the features found in the database, i.e., a U13:G22 base pair and no nt 47. Moreover, analogous constructs with a GGC anticodon permitted the growth of an Escherichia coli strain deleted for tRNA(Ala)GGC genes equally well. On the other hand, long-term growth experiments with competing E. coli strains harboring the tRNA lacking nt 47, either with the C13:G22 or the U13:G22 base pair demonstrated that the U13:G22 tRNA overtook the C13:G22 strain even when the starting proportion of strains favored the C13:G22 strain. Thus, the preference for the U13:G22 tRNA lacking nt 47 in the sequence database is most likely due to factors that come into play during extended growth or latency rather than to the ability of the tRNA to engage in protein synthesis.

Full Text

The Full Text of this article is available as a PDF (373.5 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Benne R., Sloof P. Evolution of the mitochondrial protein synthetic machinery. Biosystems. 1987;21(1):51–68. doi: 10.1016/0303-2647(87)90006-2. [DOI] [PubMed] [Google Scholar]
  2. Bourdeau V., Steinberg S. V., Ferbeyre G., Emond R., Cermakian N., Cedergren R. Amber suppression in Escherichia coli by unusual mitochondria-like transfer RNAs. Proc Natl Acad Sci U S A. 1998 Feb 17;95(4):1375–1380. doi: 10.1073/pnas.95.4.1375. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Gabriel K., Schneider J., McClain W. H. Functional evidence for indirect recognition of G.U in tRNA(Ala) by alanyl-tRNA synthetase. Science. 1996 Jan 12;271(5246):195–197. doi: 10.1126/science.271.5246.195. [DOI] [PubMed] [Google Scholar]
  4. Kumazawa Y., Nishida M. Sequence evolution of mitochondrial tRNA genes and deep-branch animal phylogenetics. J Mol Evol. 1993 Oct;37(4):380–398. doi: 10.1007/BF00178868. [DOI] [PubMed] [Google Scholar]
  5. Lang B. F., Burger G., O'Kelly C. J., Cedergren R., Golding G. B., Lemieux C., Sankoff D., Turmel M., Gray M. W. An ancestral mitochondrial DNA resembling a eubacterial genome in miniature. Nature. 1997 May 29;387(6632):493–497. doi: 10.1038/387493a0. [DOI] [PubMed] [Google Scholar]
  6. Li B., Vilardell J., Warner J. R. An RNA structure involved in feedback regulation of splicing and of translation is critical for biological fitness. Proc Natl Acad Sci U S A. 1996 Feb 20;93(4):1596–1600. doi: 10.1073/pnas.93.4.1596. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Lynch M. Mutation accumulation in transfer RNAs: molecular evidence for Muller's ratchet in mitochondrial genomes. Mol Biol Evol. 1996 Jan;13(1):209–220. doi: 10.1093/oxfordjournals.molbev.a025557. [DOI] [PubMed] [Google Scholar]
  8. Marinus M. G., Morris N. R., Söll D., Kwong T. C. Isolation and partial characterization of three Escherichia coli mutants with altered transfer ribonucleic acid methylases. J Bacteriol. 1975 Apr;122(1):257–265. doi: 10.1128/jb.122.1.257-265.1975. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Masson J. M., Miller J. H. Expression of synthetic suppressor tRNA genes under the control of a synthetic promoter. Gene. 1986;47(2-3):179–183. doi: 10.1016/0378-1119(86)90061-2. [DOI] [PubMed] [Google Scholar]
  10. Mayer M. P. A new set of useful cloning and expression vectors derived from pBlueScript. Gene. 1995 Sep 22;163(1):41–46. doi: 10.1016/0378-1119(95)00389-n. [DOI] [PubMed] [Google Scholar]
  11. Osawa S., Jukes T. H., Watanabe K., Muto A. Recent evidence for evolution of the genetic code. Microbiol Rev. 1992 Mar;56(1):229–264. doi: 10.1128/mr.56.1.229-264.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Steinberg S., Ioudovitch A. A role for the bulged nucleotide 47 in the facilitation of tertiary interactions in the tRNA structure. RNA. 1996 Jan;2(1):84–87. [PMC free article] [PubMed] [Google Scholar]
  13. Steinberg S., Misch A., Sprinzl M. Compilation of tRNA sequences and sequences of tRNA genes. Nucleic Acids Res. 1993 Jul 1;21(13):3011–3015. doi: 10.1093/nar/21.13.3011. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Varshney U., Lee C. P., RajBhandary U. L. Direct analysis of aminoacylation levels of tRNAs in vivo. Application to studying recognition of Escherichia coli initiator tRNA mutants by glutaminyl-tRNA synthetase. J Biol Chem. 1991 Dec 25;266(36):24712–24718. [PubMed] [Google Scholar]
  15. Zueva V. S., Mankin A. S., Bogdanov A. A., Baratova L. A. Specific fragmentation of tRNA and rRNA at a 7-methylguanine residue in the presence of methylated carrier RNA. Eur J Biochem. 1985 Feb 1;146(3):679–687. doi: 10.1111/j.1432-1033.1985.tb08704.x. [DOI] [PubMed] [Google Scholar]

Articles from RNA are provided here courtesy of The RNA Society

RESOURCES