Abstract
RF3 was initially characterized as a factor that stimulates translational termination in an in vitro assay. The factor has a GTP binding site and shows sequence similarity to elongation factors EF-Tu and EF-G. Paradoxically, addition of GTP abolishes RF3 stimulation in the classical termination assay, using stop triplets. We here show GTP hydrolysis, which is only dependent on the simultaneous presence of RF3 and ribosomes. Applying a new termination assay, which uses a minimessenger RNA instead of separate triplets, we show that GTP in the presence of RF3 stimulates termination at rate-limiting concentrations of RF1. We show that RF3 can substitute for EF-G in RRF-dependent ribosome recycling reactions in vitro. This activity is GTP-dependent. In addition, excess RF3 and RRF in the presence of GTP caused release of nonhydrolyzed fmet-tRNA. This supports previous genetic experiments, showing that RF3 might be involved in ribosomal drop off of peptidyl-tRNA. In contrast to GTP involvement of the above reactions, stimulation of termination with RF2 by RF3 was independent of the presence of GTP. This is consistent with previous studies, indicating that RF3 enhances the affinity of RF2 for the termination complex without GTP hydrolysis. Based on our results, we propose a model of how RF3 might function in translational termination and ribosome recycling.
Full Text
The Full Text of this article is available as a PDF (208.4 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Adamski F. M., McCaughan K. K., Jørgensen F., Kurland C. G., Tate W. P. The concentration of polypeptide chain release factors 1 and 2 at different growth rates of Escherichia coli. J Mol Biol. 1994 May 6;238(3):302–308. doi: 10.1006/jmbi.1994.1293. [DOI] [PubMed] [Google Scholar]
- Beaudry P., Sander G., Grunberg-Manago M., Douzou P. Cation-induced regulatory mechanism of GTPase activity dependent on polypeptide initiation factor 2. Biochemistry. 1979 Jan 9;18(1):202–207. doi: 10.1021/bi00568a031. [DOI] [PubMed] [Google Scholar]
- Brot N., Tate W. P., Caskey C. T., Weissbach H. The requirement for ribosomal proteins L7 and L12 in peptide-chain termination. Proc Natl Acad Sci U S A. 1974 Jan;71(1):89–92. doi: 10.1073/pnas.71.1.89. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Buckingham R. H., Grentzmann G., Kisselev L. Polypeptide chain release factors. Mol Microbiol. 1997 May;24(3):449–456. doi: 10.1046/j.1365-2958.1997.3711734.x. [DOI] [PubMed] [Google Scholar]
- CONWAY T. W., LIPMANN F. CHARACTERIZATION OF A RIBOSOME-LINKED GUANOSINE TRIPHOSPHATASE IN ESCHERICHIA COLI EXTRACTS. Proc Natl Acad Sci U S A. 1964 Dec;52:1462–1469. doi: 10.1073/pnas.52.6.1462. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Capecchi M. R., Klein H. A. Characterization of three proteins involved in polypeptide chain termination. Cold Spring Harb Symp Quant Biol. 1969;34:469–477. doi: 10.1101/sqb.1969.034.01.053. [DOI] [PubMed] [Google Scholar]
- Capecchi M. R. Polypeptide chain termination in vitro: isolation of a release factor. Proc Natl Acad Sci U S A. 1967 Sep;58(3):1144–1151. doi: 10.1073/pnas.58.3.1144. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Caskey C. T., Tompkins R., Scolnick E., Caryk T., Nirenberg M. Sequential translation of trinucleotide codons for the initiation and termination of protein synthesis. Science. 1968 Oct 4;162(3849):135–138. doi: 10.1126/science.162.3849.135. [DOI] [PubMed] [Google Scholar]
- Caskey T., Scolnick E., Tompkins R., Goldstein J., Milman G. Peptide chain termination, codon, protein factor, and ribosomal requirements. Cold Spring Harb Symp Quant Biol. 1969;34:479–488. doi: 10.1101/sqb.1969.034.01.054. [DOI] [PubMed] [Google Scholar]
- Fraser C. M., Gocayne J. D., White O., Adams M. D., Clayton R. A., Fleischmann R. D., Bult C. J., Kerlavage A. R., Sutton G., Kelley J. M. The minimal gene complement of Mycoplasma genitalium. Science. 1995 Oct 20;270(5235):397–403. doi: 10.1126/science.270.5235.397. [DOI] [PubMed] [Google Scholar]
- Freistroffer D. V., Pavlov M. Y., MacDougall J., Buckingham R. H., Ehrenberg M. Release factor RF3 in E.coli accelerates the dissociation of release factors RF1 and RF2 from the ribosome in a GTP-dependent manner. EMBO J. 1997 Jul 1;16(13):4126–4133. doi: 10.1093/emboj/16.13.4126. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Frolova L., Le Goff X., Zhouravleva G., Davydova E., Philippe M., Kisselev L. Eukaryotic polypeptide chain release factor eRF3 is an eRF1- and ribosome-dependent guanosine triphosphatase. RNA. 1996 Apr;2(4):334–341. [PMC free article] [PubMed] [Google Scholar]
- Ganoza M. C., Nakamoto T. Studies on the mechanism of polypeptide chain termination in cell-free extracts of E. coli. Proc Natl Acad Sci U S A. 1966 Jan;55(1):162–169. doi: 10.1073/pnas.55.1.162. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Goldstein J. L., Beaudet A. L., Caskey C. T. Peptide chain termination with mammalian release factor. Proc Natl Acad Sci U S A. 1970 Sep;67(1):99–106. doi: 10.1073/pnas.67.1.99. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Goldstein J. L., Caskey C. T. Peptide chain termination: effect of protein S on ribosomal binding of release factors. Proc Natl Acad Sci U S A. 1970 Oct;67(2):537–543. doi: 10.1073/pnas.67.2.537. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Goldstein J., Milman G., Scolnick E., Caskey T. Peptide chain termination. VI. Purification and site of action of S. Proc Natl Acad Sci U S A. 1970 Feb;65(2):430–437. doi: 10.1073/pnas.65.2.430. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Grentzmann G., Brechemier-Baey D., Heurgue V., Mora L., Buckingham R. H. Localization and characterization of the gene encoding release factor RF3 in Escherichia coli. Proc Natl Acad Sci U S A. 1994 Jun 21;91(13):5848–5852. doi: 10.1073/pnas.91.13.5848. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Grentzmann G., Brechemier-Baey D., Heurgué-Hamard V., Buckingham R. H. Function of polypeptide chain release factor RF-3 in Escherichia coli. RF-3 action in termination is predominantly at UGA-containing stop signals. J Biol Chem. 1995 May 5;270(18):10595–10600. doi: 10.1074/jbc.270.18.10595. [DOI] [PubMed] [Google Scholar]
- Grentzmann G., Kelly P. J. Ribosomal binding site of release factors RF1 and RF2. A new translational termination assay in vitro. J Biol Chem. 1997 May 9;272(19):12300–12304. doi: 10.1074/jbc.272.19.12300. [DOI] [PubMed] [Google Scholar]
- Heurgué-Hamard V., Karimi R., Mora L., MacDougall J., Leboeuf C., Grentzmann G., Ehrenberg M., Buckingham R. H. Ribosome release factor RF4 and termination factor RF3 are involved in dissociation of peptidyl-tRNA from the ribosome. EMBO J. 1998 Feb 2;17(3):808–816. doi: 10.1093/emboj/17.3.808. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hirashima A., Kaji A. Purification and properties of ribosome-releasing factor. Biochemistry. 1972 Oct 24;11(22):4037–4044. doi: 10.1021/bi00772a005. [DOI] [PubMed] [Google Scholar]
- Ichikawa S., Kaji A. Molecular cloning and expression of ribosome releasing factor. J Biol Chem. 1989 Nov 25;264(33):20054–20059. [PubMed] [Google Scholar]
- Janosi L., Hara H., Zhang S., Kaji A. Ribosome recycling by ribosome recycling factor (RRF)--an important but overlooked step of protein biosynthesis. Adv Biophys. 1996;32:121–201. doi: 10.1016/0065-227x(96)84743-5. [DOI] [PubMed] [Google Scholar]
- Janosi L., Mottagui-Tabar S., Isaksson L. A., Sekine Y., Ohtsubo E., Zhang S., Goon S., Nelken S., Shuda M., Kaji A. Evidence for in vivo ribosome recycling, the fourth step in protein biosynthesis. EMBO J. 1998 Feb 16;17(4):1141–1151. doi: 10.1093/emboj/17.4.1141. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Janosi L., Shimizu I., Kaji A. Ribosome recycling factor (ribosome releasing factor) is essential for bacterial growth. Proc Natl Acad Sci U S A. 1994 May 10;91(10):4249–4253. doi: 10.1073/pnas.91.10.4249. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kaziro Y., Inoue-Yokosawa N., Kawakita M. Studies on polypeptide elongation factor from E. coli. I. Crystalline factor G. J Biochem. 1972 Oct;72(4):853–863. doi: 10.1093/oxfordjournals.jbchem.a129980. [DOI] [PubMed] [Google Scholar]
- Kolakofsky D., Dewey K. F., Hershey J. W., Thach R. E. Guanosine 5'-triphosphatase activity of initiation factor f2. Proc Natl Acad Sci U S A. 1968 Nov;61(3):1066–1070. doi: 10.1073/pnas.61.3.1066. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Laalami S., Grentzmann G., Bremaud L., Cenatiempo Y. Messenger RNA translation in prokaryotes: GTPase centers associated with translational factors. Biochimie. 1996;78(7):577–589. doi: 10.1016/s0300-9084(96)80004-6. [DOI] [PubMed] [Google Scholar]
- Limbach P. A., Crain P. F., McCloskey J. A. Characterization of oligonucleotides and nucleic acids by mass spectrometry. Curr Opin Biotechnol. 1995 Feb;6(1):96–102. doi: 10.1016/0958-1669(95)80015-8. [DOI] [PubMed] [Google Scholar]
- McCaughan K. K., Ward C. D., Trotman C. N., Tate W. P. The ribosomal binding domain for the bacterial release factors RF-1, RF-2 and RF-3. FEBS Lett. 1984 Sep 17;175(1):90–94. doi: 10.1016/0014-5793(84)80576-1. [DOI] [PubMed] [Google Scholar]
- Menninger J. R. Accumulation of peptidyl tRNA is lethal to Escherichia coli. J Bacteriol. 1979 Jan;137(1):694–696. doi: 10.1128/jb.137.1.694-696.1979. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Mikuni O., Ito K., Moffat J., Matsumura K., McCaughan K., Nobukuni T., Tate W., Nakamura Y. Identification of the prfC gene, which encodes peptide-chain-release factor 3 of Escherichia coli. Proc Natl Acad Sci U S A. 1994 Jun 21;91(13):5798–5802. doi: 10.1073/pnas.91.13.5798. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Milman G., Goldstein J., Scolnick E., Caskey T. Peptide chain termination. 3. Stimulation of in vitro termination. Proc Natl Acad Sci U S A. 1969 May;63(1):183–190. doi: 10.1073/pnas.63.1.183. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Nakamura Y., Ito K., Isaksson L. A. Emerging understanding of translation termination. Cell. 1996 Oct 18;87(2):147–150. doi: 10.1016/s0092-8674(00)81331-8. [DOI] [PubMed] [Google Scholar]
- Nomura M., Gourse R., Baughman G. Regulation of the synthesis of ribosomes and ribosomal components. Annu Rev Biochem. 1984;53:75–117. doi: 10.1146/annurev.bi.53.070184.000451. [DOI] [PubMed] [Google Scholar]
- Ogawa K., Kaji A. Requirement for ribosome-releasing factor for the release of ribosomes at the termination codon. Eur J Biochem. 1975 Oct 15;58(2):411–419. doi: 10.1111/j.1432-1033.1975.tb02388.x. [DOI] [PubMed] [Google Scholar]
- Oppenheim D. S., Yanofsky C. Translational coupling during expression of the tryptophan operon of Escherichia coli. Genetics. 1980 Aug;95(4):785–795. doi: 10.1093/genetics/95.4.785. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Pavlov M. Y., Freistroffer D. V., MacDougall J., Buckingham R. H., Ehrenberg M. Fast recycling of Escherichia coli ribosomes requires both ribosome recycling factor (RRF) and release factor RF3. EMBO J. 1997 Jul 1;16(13):4134–4141. doi: 10.1093/emboj/16.13.4134. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Pel H. J., Moffat J. G., Ito K., Nakamura Y., Tate W. P. Escherichia coli release factor 3: resolving the paradox of a typical G protein structure and atypical function with guanine nucleotides. RNA. 1998 Jan;4(1):47–54. [PMC free article] [PubMed] [Google Scholar]
- Remes B., Elseviers D. Adenosine 5'-triphosphate leakage does not cause abortive infection of bacteriophage T7 in male Escherichia coli. J Bacteriol. 1980 Aug;143(2):1054–1056. doi: 10.1128/jb.143.2.1054-1056.1980. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Scolnick E., Tompkins R., Caskey T., Nirenberg M. Release factors differing in specificity for terminator codons. Proc Natl Acad Sci U S A. 1968 Oct;61(2):768–774. doi: 10.1073/pnas.61.2.768. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Tate W. P., Brown C. M. Translational termination: "stop" for protein synthesis or "pause" for regulation of gene expression. Biochemistry. 1992 Mar 10;31(9):2443–2450. doi: 10.1021/bi00124a001. [DOI] [PubMed] [Google Scholar]
- Tate W. P., Dognin M. J., Noah M., Stöffler-Meilicke M., Stöffler G. The NH2-terminal domain of Escherichia coli ribosomal protein L11. Its three-dimensional location and its role in the binding of release factors 1 and 2. J Biol Chem. 1984 Jun 10;259(11):7317–7324. [PubMed] [Google Scholar]
- Tate W. P., McCaughan K. K., Ward C. D., Sumpter V. G., Trotman C. N., Stoffler-Meilicke M., Maly P., Brimacombe R. The ribosomal binding domain of the Escherichia coli release factors. Modification of tyrosine in the N-terminal domain of ribosomal protein L11 affects release factors 1 and 2 differentially. J Biol Chem. 1986 Feb 15;261(5):2289–2293. [PubMed] [Google Scholar]
- Tate W. P., Schulze H., Nierhaus K. H. The importance of the Escherichia coli ribosomal protein L16 for the reconstitution of the peptidyl-tRNA hydrolysis activity of peptide chain termination. J Biol Chem. 1983 Nov 10;258(21):12810–12815. [PubMed] [Google Scholar]
- Uno M., Ito K., Nakamura Y. Functional specificity of amino acid at position 246 in the tRNA mimicry domain of bacterial release factor 2. Biochimie. 1996;78(11-12):935–943. doi: 10.1016/s0300-9084(97)86715-6. [DOI] [PubMed] [Google Scholar]
- Yanofsky C., Horn V., Nakamura Y. Loss of overproduction of polypeptide release factor 3 influences expression of the tryptophanase operon of Escherichia coli. J Bacteriol. 1996 Jul;178(13):3755–3762. doi: 10.1128/jb.178.13.3755-3762.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Zhouravleva G., Frolova L., Le Goff X., Le Guellec R., Inge-Vechtomov S., Kisselev L., Philippe M. Termination of translation in eukaryotes is governed by two interacting polypeptide chain release factors, eRF1 and eRF3. EMBO J. 1995 Aug 15;14(16):4065–4072. doi: 10.1002/j.1460-2075.1995.tb00078.x. [DOI] [PMC free article] [PubMed] [Google Scholar]