Abstract
Dimethyl sulfate modification was used to probe for tertiary structural elements in the group II intron PI.LSU/2 from the mitochondrial pre-ribosomal RNA of the brown alga Pylaiella littoralis. Modification of the lariat form of the intron under conditions that allow both native folding and conformational homogeneity is found to be generally consistent with secondary and tertiary structural features identified previously for group II ribozymes. A comparison of chemical probing at temperatures just below and above the first melting transition illustrates the cooperative unfolding of tertiary structure and identifies novel candidates for tertiary interactions in addition to defining elements of secondary structure. Substitution of the GAAA terminal loop of domain V is shown to be compatible with retention of conformational homogeneity (despite the loss of an important tertiary interaction), but produces a concise methylation footprint in domain I at the site previously shown to harbor the receptor for that loop. The analysis also identified two nucleotide positions in domain V with novel secondary and potential tertiary structural roles. The proposed refinement of domain V secondary structure is supported by an expanded comparative analysis of group II sequences and bears increased resemblance to U2:U6 snRNA pairing in the spliceosome.
Full Text
The Full Text of this article is available as a PDF (772.5 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Abramovitz D. L., Friedman R. A., Pyle A. M. Catalytic role of 2'-hydroxyl groups within a group II intron active site. Science. 1996 Mar 8;271(5254):1410–1413. doi: 10.1126/science.271.5254.1410. [DOI] [PubMed] [Google Scholar]
- Augustin S., Müller M. W., Schweyen R. J. Reverse self-splicing of group II intron RNAs in vitro. Nature. 1990 Jan 25;343(6256):383–386. doi: 10.1038/343383a0. [DOI] [PubMed] [Google Scholar]
- Banerjee A. R., Jaeger J. A., Turner D. H. Thermal unfolding of a group I ribozyme: the low-temperature transition is primarily disruption of tertiary structure. Biochemistry. 1993 Jan 12;32(1):153–163. doi: 10.1021/bi00052a021. [DOI] [PubMed] [Google Scholar]
- Boulanger S. C., Belcher S. M., Schmidt U., Dib-Hajj S. D., Schmidt T., Perlman P. S. Studies of point mutants define three essential paired nucleotides in the domain 5 substructure of a group II intron. Mol Cell Biol. 1995 Aug;15(8):4479–4488. doi: 10.1128/mcb.15.8.4479. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Butcher S. E., Dieckmann T., Feigon J. Solution structure of a GAAA tetraloop receptor RNA. EMBO J. 1997 Dec 15;16(24):7490–7499. doi: 10.1093/emboj/16.24.7490. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Cate J. H., Gooding A. R., Podell E., Zhou K., Golden B. L., Kundrot C. E., Cech T. R., Doudna J. A. Crystal structure of a group I ribozyme domain: principles of RNA packing. Science. 1996 Sep 20;273(5282):1678–1685. doi: 10.1126/science.273.5282.1678. [DOI] [PubMed] [Google Scholar]
- Cate J. H., Gooding A. R., Podell E., Zhou K., Golden B. L., Szewczak A. A., Kundrot C. E., Cech T. R., Doudna J. A. RNA tertiary structure mediation by adenosine platforms. Science. 1996 Sep 20;273(5282):1696–1699. doi: 10.1126/science.273.5282.1696. [DOI] [PubMed] [Google Scholar]
- Cech T. R. The generality of self-splicing RNA: relationship to nuclear mRNA splicing. Cell. 1986 Jan 31;44(2):207–210. doi: 10.1016/0092-8674(86)90751-8. [DOI] [PubMed] [Google Scholar]
- Chanfreau G., Jacquier A. An RNA conformational change between the two chemical steps of group II self-splicing. EMBO J. 1996 Jul 1;15(13):3466–3476. [PMC free article] [PubMed] [Google Scholar]
- Chanfreau G., Jacquier A. Catalytic site components common to both splicing steps of a group II intron. Science. 1994 Nov 25;266(5189):1383–1387. doi: 10.1126/science.7973729. [DOI] [PubMed] [Google Scholar]
- Costa M., Déme E., Jacquier A., Michel F. Multiple tertiary interactions involving domain II of group II self-splicing introns. J Mol Biol. 1997 Apr 4;267(3):520–536. doi: 10.1006/jmbi.1996.0882. [DOI] [PubMed] [Google Scholar]
- Costa M., Fontaine J. M., Loiseaux-de Goër S., Michel F. A group II self-splicing intron from the brown alga Pylaiella littoralis is active at unusually low magnesium concentrations and forms populations of molecules with a uniform conformation. J Mol Biol. 1997 Dec 5;274(3):353–364. doi: 10.1006/jmbi.1997.1416. [DOI] [PubMed] [Google Scholar]
- Costa M., Michel F. Frequent use of the same tertiary motif by self-folding RNAs. EMBO J. 1995 Mar 15;14(6):1276–1285. doi: 10.1002/j.1460-2075.1995.tb07111.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Costa M., Michel F. Rules for RNA recognition of GNRA tetraloops deduced by in vitro selection: comparison with in vivo evolution. EMBO J. 1997 Jun 2;16(11):3289–3302. doi: 10.1093/emboj/16.11.3289. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Daniels D. L., Michels W. J., Jr, Pyle A. M. Two competing pathways for self-splicing by group II introns: a quantitative analysis of in vitro reaction rates and products. J Mol Biol. 1996 Feb 16;256(1):31–49. doi: 10.1006/jmbi.1996.0066. [DOI] [PubMed] [Google Scholar]
- Draper D. E. Strategies for RNA folding. Trends Biochem Sci. 1996 Apr;21(4):145–149. [PubMed] [Google Scholar]
- Fabrizio P., Abelson J. Thiophosphates in yeast U6 snRNA specifically affect pre-mRNA splicing in vitro. Nucleic Acids Res. 1992 Jul 25;20(14):3659–3664. doi: 10.1093/nar/20.14.3659. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Fontaine J. M., Rousvoal S., Leblanc C., Kloareg B., Loiseaux-de Goër S. The mitochondrial LSU rDNA of the brown alga Pylaiella littoralis reveals alpha-proteobacterial features and is split by four group IIB introns with an atypical phylogeny. J Mol Biol. 1995 Aug 18;251(3):378–389. doi: 10.1006/jmbi.1995.0441. [DOI] [PubMed] [Google Scholar]
- Franzen J. S., Zhang M., Peebles C. L. Kinetic analysis of the 5' splice junction hydrolysis of a group II intron promoted by domain 5. Nucleic Acids Res. 1993 Feb 11;21(3):627–634. doi: 10.1093/nar/21.3.627. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Harris-Kerr C. L., Zhang M., Peebles C. L. The phylogenetically predicted base-pairing interaction between alpha and alpha' is required for group II splicing in vitro. Proc Natl Acad Sci U S A. 1993 Nov 15;90(22):10658–10662. doi: 10.1073/pnas.90.22.10658. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Inoue T., Cech T. R. Secondary structure of the circular form of the Tetrahymena rRNA intervening sequence: a technique for RNA structure analysis using chemical probes and reverse transcriptase. Proc Natl Acad Sci U S A. 1985 Feb;82(3):648–652. doi: 10.1073/pnas.82.3.648. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Jacquier A., Michel F. Base-pairing interactions involving the 5' and 3'-terminal nucleotides of group II self-splicing introns. J Mol Biol. 1990 Jun 5;213(3):437–447. doi: 10.1016/S0022-2836(05)80206-2. [DOI] [PubMed] [Google Scholar]
- Jacquier A., Michel F. Multiple exon-binding sites in class II self-splicing introns. Cell. 1987 Jul 3;50(1):17–29. doi: 10.1016/0092-8674(87)90658-1. [DOI] [PubMed] [Google Scholar]
- Jaeger L., Michel F., Westhof E. Involvement of a GNRA tetraloop in long-range RNA tertiary interactions. J Mol Biol. 1994 Mar 11;236(5):1271–1276. doi: 10.1016/0022-2836(94)90055-8. [DOI] [PubMed] [Google Scholar]
- Jaeger L., Westhof E., Michel F. Monitoring of the cooperative unfolding of the sunY group I intron of bacteriophage T4. The active form of the sunY ribozyme is stabilized by multiple interactions with 3' terminal intron components. J Mol Biol. 1993 Nov 20;234(2):331–346. doi: 10.1006/jmbi.1993.1590. [DOI] [PubMed] [Google Scholar]
- Jestin J. L., Dème E., Jacquier A. Identification of structural elements critical for inter-domain interactions in a group II self-splicing intron. EMBO J. 1997 May 15;16(10):2945–2954. doi: 10.1093/emboj/16.10.2945. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Konforti B. B., Abramovitz D. L., Duarte C. M., Karpeisky A., Beigelman L., Pyle A. M. Ribozyme catalysis from the major groove of group II intron domain 5. Mol Cell. 1998 Feb;1(3):433–441. doi: 10.1016/s1097-2765(00)80043-x. [DOI] [PubMed] [Google Scholar]
- Kwakman J. H., Konings D. A., Hogeweg P., Pel H. J., Grivell L. A. Structural analysis of a group II intron by chemical modifications and minimal energy calculations. J Biomol Struct Dyn. 1990 Oct;8(2):413–430. doi: 10.1080/07391102.1990.10507813. [DOI] [PubMed] [Google Scholar]
- Madhani H. D., Guthrie C. A novel base-pairing interaction between U2 and U6 snRNAs suggests a mechanism for the catalytic activation of the spliceosome. Cell. 1992 Nov 27;71(5):803–817. doi: 10.1016/0092-8674(92)90556-r. [DOI] [PubMed] [Google Scholar]
- Michel F., Ferat J. L. Structure and activities of group II introns. Annu Rev Biochem. 1995;64:435–461. doi: 10.1146/annurev.bi.64.070195.002251. [DOI] [PubMed] [Google Scholar]
- Michel F., Jacquier A., Dujon B. Comparison of fungal mitochondrial introns reveals extensive homologies in RNA secondary structure. Biochimie. 1982 Oct;64(10):867–881. doi: 10.1016/s0300-9084(82)80349-0. [DOI] [PubMed] [Google Scholar]
- Michel F., Jacquier A. Long-range intron-exon and intron-intron pairings involved in self-splicing of class II catalytic introns. Cold Spring Harb Symp Quant Biol. 1987;52:201–212. doi: 10.1101/sqb.1987.052.01.025. [DOI] [PubMed] [Google Scholar]
- Michel F., Umesono K., Ozeki H. Comparative and functional anatomy of group II catalytic introns--a review. Gene. 1989 Oct 15;82(1):5–30. doi: 10.1016/0378-1119(89)90026-7. [DOI] [PubMed] [Google Scholar]
- Murphy F. L., Cech T. R. GAAA tetraloop and conserved bulge stabilize tertiary structure of a group I intron domain. J Mol Biol. 1994 Feb 11;236(1):49–63. doi: 10.1006/jmbi.1994.1117. [DOI] [PubMed] [Google Scholar]
- Peebles C. L., Zhang M., Perlman P. S., Franzen J. S. Catalytically critical nucleotide in domain 5 of a group II intron. Proc Natl Acad Sci U S A. 1995 May 9;92(10):4422–4426. doi: 10.1073/pnas.92.10.4422. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Podar M., Dib-Hajj S., Perlman P. S. A UV-induced, Mg(2+)-dependent crosslink traps an active form of domain 3 of a self-splicing group II intron. RNA. 1995 Oct;1(8):828–840. [PMC free article] [PubMed] [Google Scholar]
- Podar M., Zhuo J., Zhang M., Franzen J. S., Perlman P. S., Peebles C. L. Domain 5 binds near a highly conserved dinucleotide in the joiner linking domains 2 and 3 of a group II intron. RNA. 1998 Feb;4(2):151–166. [PMC free article] [PubMed] [Google Scholar]
- Qin P. Z., Pyle A. M. Stopped-flow fluorescence spectroscopy of a group II intron ribozyme reveals that domain 1 is an independent folding unit with a requirement for specific Mg2+ ions in the tertiary structure. Biochemistry. 1997 Apr 22;36(16):4718–4730. doi: 10.1021/bi962665c. [DOI] [PubMed] [Google Scholar]
- Schmidt U., Podar M., Stahl U., Perlman P. S. Mutations of the two-nucleotide bulge of D5 of a group II intron block splicing in vitro and in vivo: phenotypes and suppressor mutations. RNA. 1996 Nov;2(11):1161–1172. [PMC free article] [PubMed] [Google Scholar]
- Strobel S. A., Ortoleva-Donnelly L., Ryder S. P., Cate J. H., Moncoeur E. Complementary sets of noncanonical base pairs mediate RNA helix packing in the group I intron active site. Nat Struct Biol. 1998 Jan;5(1):60–66. doi: 10.1038/nsb0198-60. [DOI] [PubMed] [Google Scholar]
- Tuerk C., Gauss P., Thermes C., Groebe D. R., Gayle M., Guild N., Stormo G., d'Aubenton-Carafa Y., Uhlenbeck O. C., Tinoco I., Jr CUUCGG hairpins: extraordinarily stable RNA secondary structures associated with various biochemical processes. Proc Natl Acad Sci U S A. 1988 Mar;85(5):1364–1368. doi: 10.1073/pnas.85.5.1364. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Weiner A. M. mRNA splicing and autocatalytic introns: distant cousins or the products of chemical determinism? Cell. 1993 Jan 29;72(2):161–164. doi: 10.1016/0092-8674(93)90654-9. [DOI] [PubMed] [Google Scholar]
- Westhof E., Masquida B., Jaeger L. RNA tectonics: towards RNA design. Fold Des. 1996;1(4):R78–R88. doi: 10.1016/S1359-0278(96)00037-5. [DOI] [PubMed] [Google Scholar]
- Yu Y. T., Maroney P. A., Darzynkiwicz E., Nilsen T. W. U6 snRNA function in nuclear pre-mRNA splicing: a phosphorothioate interference analysis of the U6 phosphate backbone. RNA. 1995 Mar;1(1):46–54. [PMC free article] [PubMed] [Google Scholar]
