Skip to main content
RNA logoLink to RNA
. 1998 Sep;4(9):1083–1095. doi: 10.1017/s1355838298980694

Specific site selection in RNA resulting from a combination of nonspecific secondary structure and -CCR- boxes: initiation of minus strand synthesis by turnip yellow mosaic virus RNA-dependent RNA polymerase.

R N Singh 1, T W Dreher 1
PMCID: PMC1369684  PMID: 9740127

Abstract

A turnip yellow mosaic virus RNA-dependent RNA polymerase activity was used to study the template requirements for in vitro minus strand synthesis, which is initiated specifically opposite the 3'-CCA that terminates the 3'-tRNA-like structure. A deletion survey confirmed earlier results suggesting the absence of minus strand promoter elements upstream of the pseudoknotted acceptor stem and 3'-terminus. Reiteration of this 27-nt domain provided two competing initiation sites. By varying the added downstream element, it was shown that the pseudoknotted domain could be functionally replaced by various simple stem/loops, although with some decrease in activity. The addition of varying numbers of consecutive -CCA- triplets to the 3' end of the tRNA-like structure resulted in accurate initiation from each added triplet. A similar spectrum of initiations occurred with an unstructured RNA consisting of 12 consecutive -CCA- triplets and no additional viral sequence. Substitution mutations revealed no influence on minus strand synthesis of the identity of the nucleotide immediately upstream of a -CC- initiation site, but a preference for a purine immediately downstream. The introduction of secondary structure into the linear template showed that the usage of potential -CCR- initiation sites is influenced by nonspecific secondary structure. We conclude that specificity arises from the requirement that a -CCR- sequence be sterically accessible. This mechanism is only applicable to interactions that do not involve RNA unwinding during site selection, but may be used commonly in positive strand RNA virus replication and be applicable to other RNA-protein interactions.

Full Text

The Full Text of this article is available as a PDF (1.2 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Arora R., Priano C., Jacobson A. B., Mills D. R. cis-acting elements within an RNA coliphage genome: fold as you please, but fold you must!! J Mol Biol. 1996 May 10;258(3):433–446. doi: 10.1006/jmbi.1996.0260. [DOI] [PubMed] [Google Scholar]
  2. Barrera I., Schuppli D., Sogo J. M., Weber H. Different mechanisms of recognition of bacteriophage Q beta plus and minus strand RNAs by Q beta replicase. J Mol Biol. 1993 Jul 20;232(2):512–521. doi: 10.1006/jmbi.1993.1407. [DOI] [PubMed] [Google Scholar]
  3. Black D. L. Finding splice sites within a wilderness of RNA. RNA. 1995 Oct;1(8):763–771. [PMC free article] [PubMed] [Google Scholar]
  4. Bransom K. L., Weiland J. J., Tsai C. H., Dreher T. W. Coding density of the turnip yellow mosaic virus genome: roles of the overlapping coat protein and p206-readthrough coding regions. Virology. 1995 Jan 10;206(1):403–412. doi: 10.1016/s0042-6822(95)80056-5. [DOI] [PubMed] [Google Scholar]
  5. Brown D., Brown J., Kang C., Gold L., Allen P. Single-stranded RNA recognition by the bacteriophage T4 translational repressor, regA. J Biol Chem. 1997 Jun 6;272(23):14969–14974. doi: 10.1074/jbc.272.23.14969. [DOI] [PubMed] [Google Scholar]
  6. Buck K. W. Comparison of the replication of positive-stranded RNA viruses of plants and animals. Adv Virus Res. 1996;47:159–251. doi: 10.1016/S0065-3527(08)60736-8. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Chen B., Lambowitz A. M. De novo and DNA primer-mediated initiation of cDNA synthesis by the mauriceville retroplasmid reverse transcriptase involve recognition of a 3' CCA sequence. J Mol Biol. 1997 Aug 22;271(3):311–332. doi: 10.1006/jmbi.1997.1185. [DOI] [PubMed] [Google Scholar]
  8. Cui T., Porter A. G. Localization of binding site for encephalomyocarditis virus RNA polymerase in the 3'-noncoding region of the viral RNA. Nucleic Acids Res. 1995 Feb 11;23(3):377–382. doi: 10.1093/nar/23.3.377. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Deiman B. A., Koenen A. K., Verlaan P. W., Pleij C. W. Minimal template requirements for initiation of minus-strand synthesis in vitro by the RNA-dependent RNA polymerase of turnip yellow mosaic virus. J Virol. 1998 May;72(5):3965–3972. doi: 10.1128/jvi.72.5.3965-3972.1998. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Deiman B. A., Kortlever R. M., Pleij C. W. The role of the pseudoknot at the 3' end of turnip yellow mosaic virus RNA in minus-strand synthesis by the viral RNA-dependent RNA polymerase. J Virol. 1997 Aug;71(8):5990–5996. doi: 10.1128/jvi.71.8.5990-5996.1997. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Dreher T. W., Hall T. C. Mutational analysis of the sequence and structural requirements in brome mosaic virus RNA for minus strand promoter activity. J Mol Biol. 1988 May 5;201(1):31–40. doi: 10.1016/0022-2836(88)90436-6. [DOI] [PubMed] [Google Scholar]
  12. Goguel V., Rosbash M. Splice site choice and splicing efficiency are positively influenced by pre-mRNA intramolecular base pairing in yeast. Cell. 1993 Mar 26;72(6):893–901. doi: 10.1016/0092-8674(93)90578-e. [DOI] [PubMed] [Google Scholar]
  13. Goodwin J. B., Skuzeski J. M., Dreher T. W. Characterization of chimeric turnip yellow mosaic virus genomes that are infectious in the absence of aminoacylation. Virology. 1997 Mar 31;230(1):113–124. doi: 10.1006/viro.1997.8475. [DOI] [PubMed] [Google Scholar]
  14. Guan H., Song C., Simon A. E. RNA promoters located on (-)-strands of a subviral RNA associated with turnip crinkle virus. RNA. 1997 Dec;3(12):1401–1412. [PMC free article] [PubMed] [Google Scholar]
  15. Levis R., Schlesinger S., Huang H. V. Promoter for Sindbis virus RNA-dependent subgenomic RNA transcription. J Virol. 1990 Apr;64(4):1726–1733. doi: 10.1128/jvi.64.4.1726-1733.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Maizels N., Weiner A. M. Phylogeny from function: evidence from the molecular fossil record that tRNA originated in replication, not translation. Proc Natl Acad Sci U S A. 1994 Jul 19;91(15):6729–6734. doi: 10.1073/pnas.91.15.6729. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Mans R. M., Pleij C. W., Bosch L. tRNA-like structures. Structure, function and evolutionary significance. Eur J Biochem. 1991 Oct 15;201(2):303–324. doi: 10.1111/j.1432-1033.1991.tb16288.x. [DOI] [PubMed] [Google Scholar]
  18. Miller W. A., Bujarski J. J., Dreher T. W., Hall T. C. Minus-strand initiation by brome mosaic virus replicase within the 3' tRNA-like structure of native and modified RNA templates. J Mol Biol. 1986 Feb 20;187(4):537–546. doi: 10.1016/0022-2836(86)90332-3. [DOI] [PubMed] [Google Scholar]
  19. Miller W. A., Dreher T. W., Hall T. C. Synthesis of brome mosaic virus subgenomic RNA in vitro by internal initiation on (-)-sense genomic RNA. Nature. 1985 Jan 3;313(5997):68–70. doi: 10.1038/313068a0. [DOI] [PubMed] [Google Scholar]
  20. Miranda G., Schuppli D., Barrera I., Hausherr C., Sogo J. M., Weber H. Recognition of bacteriophage Qbeta plus strand RNA as a template by Qbeta replicase: role of RNA interactions mediated by ribosomal proteins S1 and host factor. J Mol Biol. 1997 Apr 18;267(5):1089–1103. doi: 10.1006/jmbi.1997.0939. [DOI] [PubMed] [Google Scholar]
  21. Negrutskii B. S., Stapulionis R., Deutscher M. P. Supramolecular organization of the mammalian translation system. Proc Natl Acad Sci U S A. 1994 Feb 1;91(3):964–968. doi: 10.1073/pnas.91.3.964. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Oubridge C., Ito N., Evans P. R., Teo C. H., Nagai K. Crystal structure at 1.92 A resolution of the RNA-binding domain of the U1A spliceosomal protein complexed with an RNA hairpin. Nature. 1994 Dec 1;372(6505):432–438. doi: 10.1038/372432a0. [DOI] [PubMed] [Google Scholar]
  23. Platt T. Rho and RNA: models for recognition and response. Mol Microbiol. 1994 Mar;11(6):983–990. doi: 10.1111/j.1365-2958.1994.tb00376.x. [DOI] [PubMed] [Google Scholar]
  24. Puglisi J. D., Tan R., Calnan B. J., Frankel A. D., Williamson J. R. Conformation of the TAR RNA-arginine complex by NMR spectroscopy. Science. 1992 Jul 3;257(5066):76–80. doi: 10.1126/science.1621097. [DOI] [PubMed] [Google Scholar]
  25. Rietveld K., Pleij C. W., Bosch L. Three-dimensional models of the tRNA-like 3' termini of some plant viral RNAs. EMBO J. 1983;2(7):1079–1085. doi: 10.1002/j.1460-2075.1983.tb01549.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Siegel R. W., Adkins S., Kao C. C. Sequence-specific recognition of a subgenomic RNA promoter by a viral RNA polymerase. Proc Natl Acad Sci U S A. 1997 Oct 14;94(21):11238–11243. doi: 10.1073/pnas.94.21.11238. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Singh R. N., Dreher T. W. Turnip yellow mosaic virus RNA-dependent RNA polymerase: initiation of minus strand synthesis in vitro. Virology. 1997 Jul 7;233(2):430–439. doi: 10.1006/viro.1997.8621. [DOI] [PubMed] [Google Scholar]
  28. Skuzeski J. M., Bozarth C. S., Dreher T. W. The turnip yellow mosaic virus tRNA-like structure cannot be replaced by generic tRNA-like elements or by heterologous 3' untranslated regions known to enhance mRNA expression and stability. J Virol. 1996 Apr;70(4):2107–2115. doi: 10.1128/jvi.70.4.2107-2115.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Song C., Simon A. E. Requirement of a 3'-terminal stem-loop in in vitro transcription by an RNA-dependent RNA polymerase. J Mol Biol. 1995 Nov 17;254(1):6–14. doi: 10.1006/jmbi.1995.0594. [DOI] [PubMed] [Google Scholar]
  30. Szewczak A. A., Webster K. R., Spicer E. K., Moore P. B. An NMR characterization of the regA protein-binding site of bacteriophage T4 gene 44 mRNA. J Biol Chem. 1991 Sep 25;266(27):17832–17837. [PubMed] [Google Scholar]
  31. Todd S., Towner J. S., Brown D. M., Semler B. L. Replication-competent picornaviruses with complete genomic RNA 3' noncoding region deletions. J Virol. 1997 Nov;71(11):8868–8874. doi: 10.1128/jvi.71.11.8868-8874.1997. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Valegård K., Murray J. B., Stockley P. G., Stonehouse N. J., Liljas L. Crystal structure of an RNA bacteriophage coat protein-operator complex. Nature. 1994 Oct 13;371(6498):623–626. doi: 10.1038/371623a0. [DOI] [PubMed] [Google Scholar]
  33. Wang J., Simon A. E. Analysis of the two subgenomic RNA promoters for turnip crinkle virus in vivo and in vitro. Virology. 1997 May 26;232(1):174–186. doi: 10.1006/viro.1997.8550. [DOI] [PubMed] [Google Scholar]
  34. Weiland J. J., Dreher T. W. Cis-preferential replication of the turnip yellow mosaic virus RNA genome. Proc Natl Acad Sci U S A. 1993 Jul 1;90(13):6095–6099. doi: 10.1073/pnas.90.13.6095. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from RNA are provided here courtesy of The RNA Society

RESOURCES