Abstract
A significant fraction of the bases in a folded, structured RNA molecule participate in noncanonical base pairing interactions, often in the context of internal loops or multi-helix junction loops. The appearance of each new high-resolution RNA structure provides welcome data to guide efforts to understand and predict RNA 3D structure, especially when the RNA in question is a functionally conserved molecule. The recent publication of the crystal structure of the "Loop E" region of bacterial 5S ribosomal RNA is such an event [Correll CC, Freeborn B, Moore PB, Steitz TA, 1997, Cell 91:705-712]. In addition to providing more examples of already established noncanonical base pairs, such as purine-purine sheared pairings, trans-Hoogsteen UA, and GU wobble pairs, the structure provides the first high-resolution views of two new purine-purine pairings and a new GU pairing. The goal of the present analysis is to expand the capabilities of both chemical probing and phylogenetic analysis to predict with greater accuracy the structures of RNA molecules. First, in light of existing chemical probing data, we investigate what lessons could be learned regarding the interpretation of this widely used method of RNA structure probing. Then we analyze the 3D structure with reference to molecular phylogeny data (assuming conservation of function) to discover what alternative base pairings are geometrically compatible with the structure. The comparisons between previous modeling efforts and crystal structures show that the intricate involvements of ions and water molecules in the maintenance of non-Watson-Crick pairs render the process of correctly identifying the interacting sites in such pairs treacherous, except in cases of trans-Hoogsteen A/U or sheared A/G pairs for the adenine N1 site. The phylogenetic analysis identifies A/A, A/C, A/U and C/A, C/C, and C/U pairings isosteric with sheared A/G, as well as A/A and A/C pairings isosteric with both G/U and G/G bifurcated pairings. Thus, each non-Watson-Crick pair could be characterized by a phylogenetic signature of variations between isosteric-like pairings. In addition to the conservative changes, which form a dictionary of pairings isosterically compatible with those observed in the crystal structure, concerted changes involving several base pairs also occur. The latter covariations may indicate transitions between related but distinctive motifs within the loop E of 5S ribosomal RNA.
Full Text
The Full Text of this article is available as a PDF (707.8 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Auffinger P., Westhof E. RNA hydration: three nanoseconds of multiple molecular dynamics simulations of the solvated tRNA(Asp) anticodon hairpin. J Mol Biol. 1997 Jun 13;269(3):326–341. doi: 10.1006/jmbi.1997.1022. [DOI] [PubMed] [Google Scholar]
- Brunel C., Romby P., Westhof E., Ehresmann C., Ehresmann B. Three-dimensional model of Escherichia coli ribosomal 5 S RNA as deduced from structure probing in solution and computer modeling. J Mol Biol. 1991 Sep 5;221(1):293–308. doi: 10.1016/0022-2836(91)80220-o. [DOI] [PubMed] [Google Scholar]
- Cate J. H., Gooding A. R., Podell E., Zhou K., Golden B. L., Kundrot C. E., Cech T. R., Doudna J. A. Crystal structure of a group I ribozyme domain: principles of RNA packing. Science. 1996 Sep 20;273(5282):1678–1685. doi: 10.1126/science.273.5282.1678. [DOI] [PubMed] [Google Scholar]
- Chiu D. K., Kolodziejczak T. Inferring consensus structure from nucleic acid sequences. Comput Appl Biosci. 1991 Jul;7(3):347–352. doi: 10.1093/bioinformatics/7.3.347. [DOI] [PubMed] [Google Scholar]
- Correll C. C., Freeborn B., Moore P. B., Steitz T. A. Metals, motifs, and recognition in the crystal structure of a 5S rRNA domain. Cell. 1997 Nov 28;91(5):705–712. doi: 10.1016/s0092-8674(00)80457-2. [DOI] [PubMed] [Google Scholar]
- Correll C. C., Freeborn B., Moore P. B., Steitz T. A. Metals, motifs, and recognition in the crystal structure of a 5S rRNA domain. Cell. 1997 Nov 28;91(5):705–712. doi: 10.1016/s0092-8674(00)80457-2. [DOI] [PubMed] [Google Scholar]
- Cruse W. B., Saludjian P., Biala E., Strazewski P., Prangé T., Kennard O. Structure of a mispaired RNA double helix at 1.6-A resolution and implications for the prediction of RNA secondary structure. Proc Natl Acad Sci U S A. 1994 May 10;91(10):4160–4164. doi: 10.1073/pnas.91.10.4160. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Dallas A., Moore P. B. The loop E-loop D region of Escherichia coli 5S rRNA: the solution structure reveals an unusual loop that may be important for binding ribosomal proteins. Structure. 1997 Dec 15;5(12):1639–1653. doi: 10.1016/s0969-2126(97)00311-0. [DOI] [PubMed] [Google Scholar]
- Denisov V. P., Carlström G., Venu K., Halle B. Kinetics of DNA hydration. J Mol Biol. 1997 Apr 25;268(1):118–136. doi: 10.1006/jmbi.1996.0862. [DOI] [PubMed] [Google Scholar]
- Fischel J. L., Ebel J. P. Sequence studies on the 5S RNA of Proteus vulgaris: comparison with 5S RNA of Escherichia coli. Biochimie. 1975;57(8):899–904. doi: 10.1016/s0300-9084(75)80212-4. [DOI] [PubMed] [Google Scholar]
- Fox G. E., Woese C. R. 5S RNA secondary structure. Nature. 1975 Aug 7;256(5517):505–507. doi: 10.1038/256505a0. [DOI] [PubMed] [Google Scholar]
- Holbrook S. R., Cheong C., Tinoco I., Jr, Kim S. H. Crystal structure of an RNA double helix incorporating a track of non-Watson-Crick base pairs. Nature. 1991 Oct 10;353(6344):579–581. doi: 10.1038/353579a0. [DOI] [PubMed] [Google Scholar]
- Holbrook S. R., Kim S. H. Correlation between chemical modification and surface accessibility in yeast phenylalanine transfer RNA. Biopolymers. 1983 Apr;22(4):1145–1166. doi: 10.1002/bip.360220410. [DOI] [PubMed] [Google Scholar]
- Hüttenhofer A., Westhof E., Böck A. Solution structure of mRNA hairpins promoting selenocysteine incorporation in Escherichia coli and their base-specific interaction with special elongation factor SELB. RNA. 1996 Apr;2(4):354–366. [PMC free article] [PubMed] [Google Scholar]
- Kim S. H., Quigley G. J., Suddath F. L., McPherson A., Sneden D., Kim J. J., Weinzierl J., Rich A. Three-dimensional structure of yeast phenylalanine transfer RNA: folding of the polynucleotide chain. Science. 1973 Jan 19;179(4070):285–288. doi: 10.1126/science.179.4070.285. [DOI] [PubMed] [Google Scholar]
- Lentzen G., Moine H., Ehresmann C., Ehresmann B., Wintermeyer W. Structure of 4.5S RNA in the signal recognition particle of Escherichia coli as studied by enzymatic and chemical probing. RNA. 1996 Mar;2(3):244–253. [PMC free article] [PubMed] [Google Scholar]
- Leontis N. B., Ghosh P., Moore P. B. Effect of magnesium ion on the structure of the 5S RNA from Escherichia coli. An imino proton magnetic resonance study of the helix I, IV, and V regions of the molecule. Biochemistry. 1986 Nov 18;25(23):7386–7392. doi: 10.1021/bi00371a021. [DOI] [PubMed] [Google Scholar]
- Moazed D., Stern S., Noller H. F. Rapid chemical probing of conformation in 16 S ribosomal RNA and 30 S ribosomal subunits using primer extension. J Mol Biol. 1986 Feb 5;187(3):399–416. doi: 10.1016/0022-2836(86)90441-9. [DOI] [PubMed] [Google Scholar]
- Richmond T. J. Solvent accessible surface area and excluded volume in proteins. Analytical equations for overlapping spheres and implications for the hydrophobic effect. J Mol Biol. 1984 Sep 5;178(1):63–89. doi: 10.1016/0022-2836(84)90231-6. [DOI] [PubMed] [Google Scholar]
- Rogers M. J., Simmons J., Walker R. T., Weisburg W. G., Woese C. R., Tanner R. S., Robinson I. M., Stahl D. A., Olsen G., Leach R. H. Construction of the mycoplasma evolutionary tree from 5S rRNA sequence data. Proc Natl Acad Sci U S A. 1985 Feb;82(4):1160–1164. doi: 10.1073/pnas.82.4.1160. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Romby P., Baudin F., Brunel C., Leal de Stevenson I., Westhof E., Romaniuk P. J., Ehresmann C., Ehresmann B. Ribosomal 5S RNA from Xenopus laevis oocytes: conformation and interaction with transcription factor IIIA. Biochimie. 1990 Jun-Jul;72(6-7):437–452. doi: 10.1016/0300-9084(90)90068-r. [DOI] [PubMed] [Google Scholar]
- Romby P., Moras D., Bergdoll M., Dumas P., Vlassov V. V., Westhof E., Ebel J. P., Giegé R. Yeast tRNAAsp tertiary structure in solution and areas of interaction of the tRNA with aspartyl-tRNA synthetase. A comparative study of the yeast phenylalanine system by phosphate alkylation experiments with ethylnitrosourea. J Mol Biol. 1985 Aug 5;184(3):455–471. doi: 10.1016/0022-2836(85)90294-3. [DOI] [PubMed] [Google Scholar]
- Romby P., Westhof E., Toukifimpa R., Mache R., Ebel J. P., Ehresmann C., Ehresmann B. Higher order structure of chloroplastic 5S ribosomal RNA from spinach. Biochemistry. 1988 Jun 28;27(13):4721–4730. doi: 10.1021/bi00413a021. [DOI] [PubMed] [Google Scholar]
- Sussman J. L., Holbrook S. R., Warrant R. W., Church G. M., Kim S. H. Crystal structure of yeast phenylalanine transfer RNA. I. Crystallographic refinement. J Mol Biol. 1978 Aug 25;123(4):607–630. doi: 10.1016/0022-2836(78)90209-7. [DOI] [PubMed] [Google Scholar]
- Szewczak A. A., Moore P. B. The sarcin/ricin loop, a modular RNA. J Mol Biol. 1995 Mar 17;247(1):81–98. doi: 10.1006/jmbi.1994.0124. [DOI] [PubMed] [Google Scholar]
- Szymanski M., Specht T., Barciszewska M. Z., Barciszewski J., Erdmann V. A. 5S rRNA Data Bank. Nucleic Acids Res. 1998 Jan 1;26(1):156–159. doi: 10.1093/nar/26.1.156. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Westhof E., Romby P., Romaniuk P. J., Ebel J. P., Ehresmann C., Ehresmann B. Computer modeling from solution data of spinach chloroplast and of Xenopus laevis somatic and oocyte 5 S rRNAs. J Mol Biol. 1989 May 20;207(2):417–431. doi: 10.1016/0022-2836(89)90264-7. [DOI] [PubMed] [Google Scholar]
- Westhof E. Water: an integral part of nucleic acid structure. Annu Rev Biophys Biophys Chem. 1988;17:125–144. doi: 10.1146/annurev.bb.17.060188.001013. [DOI] [PubMed] [Google Scholar]
- Wimberly B., Varani G., Tinoco I., Jr The conformation of loop E of eukaryotic 5S ribosomal RNA. Biochemistry. 1993 Feb 2;32(4):1078–1087. doi: 10.1021/bi00055a013. [DOI] [PubMed] [Google Scholar]