Skip to main content
RNA logoLink to RNA
. 1998 Sep;4(9):1165–1175. doi: 10.1017/s1355838298980542

Recombination, RNA evolution, and bifunctional RNA molecules isolated through chimeric SELEX.

D H Burke 1, J H Willis 1
PMCID: PMC1369690  PMID: 9740133

Abstract

Exchange of RNA structural domains through recombination can be used to engineer RNAs with novel functions and may have played an important role in the early evolution of life. The degree of function an RNA element retains upon recombination into a new sequence context is a measure of how deleterious or beneficial recombination will be. When we fused pairs of aptamers previously selected to bind coenzyme A, chloramphenicol, or adenosine, the chimerae retained some ability to bind both targets, but with reduced binding activity both in solution and on affinity resins, probably due to misfolding. Complex populations of recombined RNAs gave similar results. Applying dual selection pressure to recombined populations yielded the combinations that were best suited to binding both targets. Most reselected RNAs folded into the active conformation more readily than chimerae built from arbitrarily chosen aptamers, as indicated both by solution Kd measurements and affinity resin binding activity. Deletion/selection experiments confirmed that the sequences required for binding are fully contained within the respective domains and not derived from interaction between the domains, consistent with the modular architecture of their original design. The combinatorial nature of the recombination methods presented here takes advantage of the full sequence diversity of the starting populations and yields large numbers of bifunctional molecules (10(6) to more than 1012). The method can be easily generalized and should be applicable to engineering dual-function RNAs for a wide variety of applications, including catalysis, novel therapeutics, and studies of long-range RNA structure.

Full Text

The Full Text of this article is available as a PDF (1.3 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Beaudry A. A., Joyce G. F. Directed evolution of an RNA enzyme. Science. 1992 Jul 31;257(5070):635–641. doi: 10.1126/science.1496376. [DOI] [PubMed] [Google Scholar]
  2. Burke D. H., Gold L. RNA aptamers to the adenosine moiety of S-adenosyl methionine: structural inferences from variations on a theme and the reproducibility of SELEX. Nucleic Acids Res. 1997 May 15;25(10):2020–2024. doi: 10.1093/nar/25.10.2020. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Burke D. H., Hoffman D. C. A novel acidophilic RNA motif that recognizes coenzyme A. Biochemistry. 1998 Mar 31;37(13):4653–4663. doi: 10.1021/bi972877p. [DOI] [PubMed] [Google Scholar]
  4. Burke D. H., Hoffman D. C., Brown A., Hansen M., Pardi A., Gold L. RNA aptamers to the peptidyl transferase inhibitor chloramphenicol. Chem Biol. 1997 Nov;4(11):833–843. doi: 10.1016/s1074-5521(97)90116-2. [DOI] [PubMed] [Google Scholar]
  5. Cate J. H., Gooding A. R., Podell E., Zhou K., Golden B. L., Szewczak A. A., Kundrot C. E., Cech T. R., Doudna J. A. RNA tertiary structure mediation by adenosine platforms. Science. 1996 Sep 20;273(5282):1696–1699. doi: 10.1126/science.273.5282.1696. [DOI] [PubMed] [Google Scholar]
  6. Crameri A., Raillard S. A., Bermudez E., Stemmer W. P. DNA shuffling of a family of genes from diverse species accelerates directed evolution. Nature. 1998 Jan 15;391(6664):288–291. doi: 10.1038/34663. [DOI] [PubMed] [Google Scholar]
  7. Dai X., De Mesmaeker A., Joyce G. F. Cleavage of an amide bond by a ribozyme. Science. 1995 Jan 13;267(5195):237–240. doi: 10.1126/science.7809628. [DOI] [PubMed] [Google Scholar]
  8. Doolittle R. F. The multiplicity of domains in proteins. Annu Rev Biochem. 1995;64:287–314. doi: 10.1146/annurev.bi.64.070195.001443. [DOI] [PubMed] [Google Scholar]
  9. Doudna J. A., Cech T. R. Self-assembly of a group I intron active site from its component tertiary structural domains. RNA. 1995 Mar;1(1):36–45. [PMC free article] [PubMed] [Google Scholar]
  10. Ellington A. D. Experimental testing of theories of an early RNA world. Methods Enzymol. 1993;224:646–664. doi: 10.1016/0076-6879(93)24048-y. [DOI] [PubMed] [Google Scholar]
  11. Fisch I., Kontermann R. E., Finnern R., Hartley O., Soler-Gonzalez A. S., Griffiths A. D., Winter G. A strategy of exon shuffling for making large peptide repertoires displayed on filamentous bacteriophage. Proc Natl Acad Sci U S A. 1996 Jul 23;93(15):7761–7766. doi: 10.1073/pnas.93.15.7761. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Gilbert W., Glynias M. On the ancient nature of introns. Gene. 1993 Dec 15;135(1-2):137–144. doi: 10.1016/0378-1119(93)90058-b. [DOI] [PubMed] [Google Scholar]
  13. Harris M. E., Kazantsev A. V., Chen J. L., Pace N. R. Analysis of the tertiary structure of the ribonuclease P ribozyme-substrate complex by site-specific photoaffinity crosslinking. RNA. 1997 Jun;3(6):561–576. [PMC free article] [PubMed] [Google Scholar]
  14. Jenison R. D., Gill S. C., Pardi A., Polisky B. High-resolution molecular discrimination by RNA. Science. 1994 Mar 11;263(5152):1425–1429. doi: 10.1126/science.7510417. [DOI] [PubMed] [Google Scholar]
  15. Lee Y., Kindelberger D. W., Lee J. Y., McClennen S., Chamberlain J., Engelke D. R. Nuclear pre-tRNA terminal structure and RNase P recognition. RNA. 1997 Feb;3(2):175–185. [PMC free article] [PubMed] [Google Scholar]
  16. Lehman N., Joyce G. F. Evolution in vitro of an RNA enzyme with altered metal dependence. Nature. 1993 Jan 14;361(6408):182–185. doi: 10.1038/361182a0. [DOI] [PubMed] [Google Scholar]
  17. Lorsch J. R., Szostak J. W. In vitro evolution of new ribozymes with polynucleotide kinase activity. Nature. 1994 Sep 1;371(6492):31–36. doi: 10.1038/371031a0. [DOI] [PubMed] [Google Scholar]
  18. Pyle A. M., Green J. B. RNA folding. Curr Opin Struct Biol. 1995 Jun;5(3):303–310. doi: 10.1016/0959-440x(95)80091-3. [DOI] [PubMed] [Google Scholar]
  19. Sabeti P. C., Unrau P. J., Bartel D. P. Accessing rare activities from random RNA sequences: the importance of the length of molecules in the starting pool. Chem Biol. 1997 Oct;4(10):767–774. doi: 10.1016/s1074-5521(97)90315-x. [DOI] [PubMed] [Google Scholar]
  20. Sassanfar M., Szostak J. W. An RNA motif that binds ATP. Nature. 1993 Aug 5;364(6437):550–553. doi: 10.1038/364550a0. [DOI] [PubMed] [Google Scholar]
  21. Stemmer W. P. DNA shuffling by random fragmentation and reassembly: in vitro recombination for molecular evolution. Proc Natl Acad Sci U S A. 1994 Oct 25;91(22):10747–10751. doi: 10.1073/pnas.91.22.10747. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Stemmer W. P. Rapid evolution of a protein in vitro by DNA shuffling. Nature. 1994 Aug 4;370(6488):389–391. doi: 10.1038/370389a0. [DOI] [PubMed] [Google Scholar]
  23. Strobel S. A., Doudna J. A. RNA seeing double: close-packing of helices in RNA tertiary structure. Trends Biochem Sci. 1997 Jul;22(7):262–266. doi: 10.1016/s0968-0004(97)01056-6. [DOI] [PubMed] [Google Scholar]
  24. Tang J., Breaker R. R. Rational design of allosteric ribozymes. Chem Biol. 1997 Jun;4(6):453–459. doi: 10.1016/s1074-5521(97)90197-6. [DOI] [PubMed] [Google Scholar]
  25. Tsang J., Joyce G. F. Evolutionary optimization of the catalytic properties of a DNA-cleaving ribozyme. Biochemistry. 1994 May 17;33(19):5966–5973. doi: 10.1021/bi00185a038. [DOI] [PubMed] [Google Scholar]
  26. Tuerk C., MacDougal S., Gold L. RNA pseudoknots that inhibit human immunodeficiency virus type 1 reverse transcriptase. Proc Natl Acad Sci U S A. 1992 Aug 1;89(15):6988–6992. doi: 10.1073/pnas.89.15.6988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Wallis M. G., von Ahsen U., Schroeder R., Famulok M. A novel RNA motif for neomycin recognition. Chem Biol. 1995 Aug;2(8):543–552. doi: 10.1016/1074-5521(95)90188-4. [DOI] [PubMed] [Google Scholar]
  28. Westaway S. K., Larson G. P., Li S., Zaia J. A., Rossi J. J. A chimeric tRNA(Lys3)-ribozyme inhibits HIV replication following virion assembly. Nucleic Acids Symp Ser. 1995;(33):194–199. [PubMed] [Google Scholar]
  29. Wilson C., Szostak J. W. In vitro evolution of a self-alkylating ribozyme. Nature. 1995 Apr 27;374(6525):777–782. doi: 10.1038/374777a0. [DOI] [PubMed] [Google Scholar]
  30. Wright M. C., Joyce G. F. Continuous in vitro evolution of catalytic function. Science. 1997 Apr 25;276(5312):614–617. doi: 10.1126/science.276.5312.614. [DOI] [PubMed] [Google Scholar]
  31. Yuan Y., Altman S. Substrate recognition by human RNase P: identification of small, model substrates for the enzyme. EMBO J. 1995 Jan 3;14(1):159–168. doi: 10.1002/j.1460-2075.1995.tb06986.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. de Souza S. J., Long M., Schoenbach L., Roy S. W., Gilbert W. Intron positions correlate with module boundaries in ancient proteins. Proc Natl Acad Sci U S A. 1996 Dec 10;93(25):14632–14636. doi: 10.1073/pnas.93.25.14632. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from RNA are provided here courtesy of The RNA Society

RESOURCES