Skip to main content
RNA logoLink to RNA
. 1998 Oct;4(10):1295–1303. doi: 10.1017/s1355838298980815

Correlation between bending of the VM region and pathogenicity of different Potato Spindle Tuber Viroid strains.

A Schmitz 1, D Riesner 1
PMCID: PMC1369701  PMID: 9769103

Abstract

Only 40 of the 359 nucleotides of Potato Spindle Tuber Viroid (PSTVd) represent the virulence-modulating (VM) region. Minor sequence variations in this domain distinguish mild from severe and even necrotic strains. Our recent hypothesis (Owens RA et al., 1996, Virology 222:144-158) that these differences result in varying degrees of bending of this part of the molecule could be tested experimentally. By in vitro transcription and partial double-strand formation, three types of model RNAs were prepared and subjected to electrophoresis in polyacrylamide gels: (1) Fragments representing the VM regions of six different PSTVd strains; (2) control fragments containing a bulge-loop as a rigid bend or an internal loop as a point of increased flexibility; and (3) dsRNAs of 36, 39, and 43 bp as length standards. Migration anomalies in gels of increasing percentage were evaluated and resulted in the following conclusions. In the absence of Mg2+, the VM regions differ only in terms of flexibility. Addition of Mg2+ induces conformational changes in these RNAs. All strains but Mild exhibit a rigid bend, and the angle of bending increases monotonically with the pathogenicity of the strain. The data are discussed in terms of a mechanism of pathogenicity, that protein-binding to the VM region is the primary pathogenic event.

Full Text

The Full Text of this article is available as a PDF (350.8 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Allain F. H., Howe P. W., Neuhaus D., Varani G. Structural basis of the RNA-binding specificity of human U1A protein. EMBO J. 1997 Sep 15;16(18):5764–5772. doi: 10.1093/emboj/16.18.5764. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Baumstark T., Schröder A. R., Riesner D. Viroid processing: switch from cleavage to ligation is driven by a change from a tetraloop to a loop E conformation. EMBO J. 1997 Feb 3;16(3):599–610. doi: 10.1093/emboj/16.3.599. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Bevilacqua P. C., Cech T. R. Minor-groove recognition of double-stranded RNA by the double-stranded RNA-binding domain from the RNA-activated protein kinase PKR. Biochemistry. 1996 Aug 6;35(31):9983–9994. doi: 10.1021/bi9607259. [DOI] [PubMed] [Google Scholar]
  4. Bhattacharyya A., Lilley D. M. The contrasting structures of mismatched DNA sequences containing looped-out bases (bulges) and multiple mismatches (bubbles). Nucleic Acids Res. 1989 Sep 12;17(17):6821–6840. doi: 10.1093/nar/17.17.6821. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Bhattacharyya A., Murchie A. I., Lilley D. M. RNA bulges and the helical periodicity of double-stranded RNA. Nature. 1990 Feb 1;343(6257):484–487. doi: 10.1038/343484a0. [DOI] [PubMed] [Google Scholar]
  6. Branch A. D., Robertson H. D. A replication cycle for viroids and other small infectious RNA's. Science. 1984 Feb 3;223(4635):450–455. doi: 10.1126/science.6197756. [DOI] [PubMed] [Google Scholar]
  7. Chu W. M., Ballard R., Carpick B. W., Williams B. R., Schmid C. W. Potential Alu function: regulation of the activity of double-stranded RNA-activated kinase PKR. Mol Cell Biol. 1998 Jan;18(1):58–68. doi: 10.1128/mcb.18.1.58. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Circle D. A., Neel O. D., Robertson H. D., Clarke P. A., Mathews M. B. Surprising specificity of PKR binding to delta agent genomic RNA. RNA. 1997 Apr;3(4):438–448. [PMC free article] [PubMed] [Google Scholar]
  9. Clarke P. A., Mathews M. B. Interactions between the double-stranded RNA binding motif and RNA: definition of the binding site for the interferon-induced protein kinase DAI (PKR) on adenovirus VA RNA. RNA. 1995 Mar;1(1):7–20. [PMC free article] [PubMed] [Google Scholar]
  10. Diener T. O., Hammond R. W., Black T., Katze M. G. Mechanism of viroid pathogenesis: differential activation of the interferon-induced, double-stranded RNA-activated, M(r) 68,000 protein kinase by viroid strains of varying pathogenicity. Biochimie. 1993;75(7):533–538. doi: 10.1016/0300-9084(93)90058-z. [DOI] [PubMed] [Google Scholar]
  11. Diener T. O. Potato spindle tuber "virus". IV. A replicating, low molecular weight RNA. Virology. 1971 Aug;45(2):411–428. doi: 10.1016/0042-6822(71)90342-4. [DOI] [PubMed] [Google Scholar]
  12. Diener T. O., Raymer W. B. Potato spindle tuber virus: a plant virus with properties of a free nucleic acid. Science. 1967 Oct 20;158(3799):378–381. doi: 10.1126/science.158.3799.378. [DOI] [PubMed] [Google Scholar]
  13. Grainger R. J., Murchie A. I., Norman D. G., Lilley D. M. Severe axial bending of RNA induced by the U1A binding element present in the 3' untranslated region of the U1A mRNA. J Mol Biol. 1997 Oct 17;273(1):84–92. doi: 10.1006/jmbi.1997.1289. [DOI] [PubMed] [Google Scholar]
  14. Gross H. J., Domdey H., Lossow C., Jank P., Raba M., Alberty H., Sänger H. L. Nucleotide sequence and secondary structure of potato spindle tuber viroid. Nature. 1978 May 18;273(5659):203–208. doi: 10.1038/273203a0. [DOI] [PubMed] [Google Scholar]
  15. Gruner R., Fels A., Qu F., Zimmat R., Steger G., Riesner D. Interdependence of pathogenicity and replicability with potato spindle tuber viroid. Virology. 1995 May 10;209(1):60–69. doi: 10.1006/viro.1995.1230. [DOI] [PubMed] [Google Scholar]
  16. Hammond R. W. Analysis of the virulence modulating region of potato spindle tuber viroid (PSTVd) by site-directed mutagenesis. Virology. 1992 Apr;187(2):654–662. doi: 10.1016/0042-6822(92)90468-5. [DOI] [PubMed] [Google Scholar]
  17. Harders J., Lukács N., Robert-Nicoud M., Jovin T. M., Riesner D. Imaging of viroids in nuclei from tomato leaf tissue by in situ hybridization and confocal laser scanning microscopy. EMBO J. 1989 Dec 20;8(13):3941–3949. doi: 10.1002/j.1460-2075.1989.tb08577.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Hiddinga H. J., Crum C. J., Hu J., Roth D. A. Viroid-induced phosphorylation of a host protein related to a dsRNA-dependent protein kinase. Science. 1988 Jul 22;241(4864):451–453. doi: 10.1126/science.3393910. [DOI] [PubMed] [Google Scholar]
  19. Jiménez-García L. F., Green S. R., Mathews M. B., Spector D. L. Organization of the double-stranded RNA-activated protein kinase DAI and virus-associated VA RNAI in adenovirus-2-infected HeLa cells. J Cell Sci. 1993 Sep;106(Pt 1):11–22. doi: 10.1242/jcs.106.1.11. [DOI] [PubMed] [Google Scholar]
  20. Kahn J. D., Yun E., Crothers D. M. Detection of localized DNA flexibility. Nature. 1994 Mar 10;368(6467):163–166. doi: 10.1038/368163a0. [DOI] [PubMed] [Google Scholar]
  21. Keese P., Symons R. H. Domains in viroids: evidence of intermolecular RNA rearrangements and their contribution to viroid evolution. Proc Natl Acad Sci U S A. 1985 Jul;82(14):4582–4586. doi: 10.1073/pnas.82.14.4582. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Krupp G. RNA synthesis: strategies for the use of bacteriophage RNA polymerases. Gene. 1988 Dec 10;72(1-2):75–89. doi: 10.1016/0378-1119(88)90129-1. [DOI] [PubMed] [Google Scholar]
  23. Kumar A., Yang Y. L., Flati V., Der S., Kadereit S., Deb A., Haque J., Reis L., Weissmann C., Williams B. R. Deficient cytokine signaling in mouse embryo fibroblasts with a targeted deletion in the PKR gene: role of IRF-1 and NF-kappaB. EMBO J. 1997 Jan 15;16(2):406–416. doi: 10.1093/emboj/16.2.406. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Laing L. G., Gluick T. C., Draper D. E. Stabilization of RNA structure by Mg ions. Specific and non-specific effects. J Mol Biol. 1994 Apr 15;237(5):577–587. doi: 10.1006/jmbi.1994.1256. [DOI] [PubMed] [Google Scholar]
  25. Langland J. O., Jin S., Jacobs B. L., Roth D. A. Identification of a plant-encoded analog of PKR, the mammalian double-stranded RNA-dependent protein kinase. Plant Physiol. 1995 Jul;108(3):1259–1267. doi: 10.1104/pp.108.3.1259. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Langland J. O., Langland L. A., Browning K. S., Roth D. A. Phosphorylation of plant eukaryotic initiation factor-2 by the plant-encoded double-stranded RNA-dependent protein kinase, pPKR, and inhibition of protein synthesis in vitro. J Biol Chem. 1996 Feb 23;271(8):4539–4544. doi: 10.1074/jbc.271.8.4539. [DOI] [PubMed] [Google Scholar]
  27. Langland J. O., Langland L., Zeman C., Saha D., Roth D. A. Developmental regulation of a plant encoded inhibitor of eukaryotic initiation factor 2 alpha phosphorylation. Plant J. 1997 Aug;12(2):393–400. doi: 10.1046/j.1365-313x.1997.12020393.x. [DOI] [PubMed] [Google Scholar]
  28. Lee S. B., Esteban M. The interferon-induced double-stranded RNA-activated protein kinase induces apoptosis. Virology. 1994 Mar;199(2):491–496. doi: 10.1006/viro.1994.1151. [DOI] [PubMed] [Google Scholar]
  29. Manche L., Green S. R., Schmedt C., Mathews M. B. Interactions between double-stranded RNA regulators and the protein kinase DAI. Mol Cell Biol. 1992 Nov;12(11):5238–5248. doi: 10.1128/mcb.12.11.5238. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Minks M. A., West D. K., Benvin S., Baglioni C. Structural requirements of double-stranded RNA for the activation of 2',5'-oligo(A) polymerase and protein kinase of interferon-treated HeLa cells. J Biol Chem. 1979 Oct 25;254(20):10180–10183. [PubMed] [Google Scholar]
  31. Owens R. A., Steger G., Hu Y., Fels A., Hammond R. W., Riesner D. RNA structural features responsible for potato spindle tuber viroid pathogenicity. Virology. 1996 Aug 1;222(1):144–158. doi: 10.1006/viro.1996.0405. [DOI] [PubMed] [Google Scholar]
  32. Owens R. A., Steger G., Hu Y., Fels A., Hammond R. W., Riesner D. RNA structural features responsible for potato spindle tuber viroid pathogenicity. Virology. 1996 Aug 1;222(1):144–158. doi: 10.1006/viro.1996.0405. [DOI] [PubMed] [Google Scholar]
  33. Petryshyn R. A., Li J., Judware R. Activation of the dsRNA-dependent kinase. Prog Mol Subcell Biol. 1994;14:1–14. doi: 10.1007/978-3-642-78549-8_1. [DOI] [PubMed] [Google Scholar]
  34. Rice J. A., Crothers D. M. DNA bending by the bulge defect. Biochemistry. 1989 May 16;28(10):4512–4516. doi: 10.1021/bi00436a058. [DOI] [PubMed] [Google Scholar]
  35. Robertson H. D., Manche L., Mathews M. B. Paradoxical interactions between human delta hepatitis agent RNA and the cellular protein kinase PKR. J Virol. 1996 Aug;70(8):5611–5617. doi: 10.1128/jvi.70.8.5611-5617.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Rogers W. H., Draper D., Kahn K. L., Keeler E. B., Rubenstein L. V., Kosecoff J., Brook R. H. Quality of care before and after implementation of the DRG-based prospective payment system. A summary of effects. JAMA. 1990 Oct 17;264(15):1989–1994. [PubMed] [Google Scholar]
  37. Schmitz M., Steger G. Base-pair probability profiles of RNA secondary structures. Comput Appl Biosci. 1992 Aug;8(4):389–399. doi: 10.1093/bioinformatics/8.4.389. [DOI] [PubMed] [Google Scholar]
  38. Schnölzer M., Haas B., Raam K., Hofmann H., Sänger H. L. Correlation between structure and pathogenicity of potato spindle tuber viroid (PSTV). EMBO J. 1985 Sep;4(9):2181–2190. doi: 10.1002/j.1460-2075.1985.tb03913.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  39. Schumacher J., Sänger H. L., Riesner D. Subcellular localization of viroids in highly purified nuclei from tomato leaf tissue. EMBO J. 1983;2(9):1549–1555. doi: 10.1002/j.1460-2075.1983.tb01622.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  40. Srivastava S. P., Kumar K. U., Kaufman R. J. Phosphorylation of eukaryotic translation initiation factor 2 mediates apoptosis in response to activation of the double-stranded RNA-dependent protein kinase. J Biol Chem. 1998 Jan 23;273(4):2416–2423. doi: 10.1074/jbc.273.4.2416. [DOI] [PubMed] [Google Scholar]
  41. Tang R. S., Draper D. E. Bulge loops used to measure the helical twist of RNA in solution. Biochemistry. 1990 Jun 5;29(22):5232–5237. doi: 10.1021/bi00474a003. [DOI] [PubMed] [Google Scholar]
  42. Visvader J. E., Symons R. H. Eleven new sequence variants of citrus exocortis viroid and the correlation of sequence with pathogenicity. Nucleic Acids Res. 1985 Apr 25;13(8):2907–2920. doi: 10.1093/nar/13.8.2907. [DOI] [PMC free article] [PubMed] [Google Scholar]
  43. Wyatt J. R., Chastain M., Puglisi J. D. Synthesis and purification of large amounts of RNA oligonucleotides. Biotechniques. 1991 Dec;11(6):764–769. [PubMed] [Google Scholar]
  44. Zacharias M., Hagerman P. J. Bulge-induced bends in RNA: quantification by transient electric birefringence. J Mol Biol. 1995 Mar 31;247(3):486–500. doi: 10.1006/jmbi.1995.0155. [DOI] [PubMed] [Google Scholar]
  45. Zacharias M., Hagerman P. J. The influence of symmetric internal loops on the flexibility of RNA. J Mol Biol. 1996 Mar 29;257(2):276–289. doi: 10.1006/jmbi.1996.0162. [DOI] [PubMed] [Google Scholar]

Articles from RNA are provided here courtesy of The RNA Society

RESOURCES