Skip to main content
RNA logoLink to RNA
. 1998 Nov;4(11):1418–1435. doi: 10.1017/s1355838298981031

cis-acting RNA elements required for replication of bovine viral diarrhea virus-hepatitis C virus 5' nontranslated region chimeras.

I Frolov 1, M S McBride 1, C M Rice 1
PMCID: PMC1369714  PMID: 9814762

Abstract

Pestiviruses, such as bovine viral diarrhea virus (BVDV), share many similarities with hepatitis C virus (HCV) yet are more amenable to virologic and genetic analysis. For both BVDV and HCV, translation is initiated via an internal ribosome entry site (IRES). Besides IRES function, the viral 5' nontranslated regions (NTRs) may also contain cis-acting RNA elements important for viral replication. A series of chimeric RNAs were used to examine the function of the BVDV 5' NTR. Our results show that: (1) the HCV and the encephalomyocarditis virus (EMCV) IRES element can functionally replace that of BVDV; (2) two 5' terminal hairpins in BVDV genomic RNA are important for efficient replication; (3) replacement of the entire BVDV 5' NTR with those of HCV or EMCV leads to severely impaired replication; (4) such replacement chimeras are unstable and efficiently replicating pseudorevertants arise; (5) pseudorevertant mutations involve deletion of 5' sequences and/or acquisition of novel 5' sequences such that the 5' terminal 3-4 bases of BVDV genome RNA are restored. Besides providing new insight into functional elements in the BVDV 5' NTR, these chimeras may prove useful as pestivirus vaccines and for screening and evaluation of anti-HCV IRES antivirals.

Full Text

The Full Text of this article is available as a PDF (1.1 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Ball L. A. Replication of the genomic RNA of a positive-strand RNA animal virus from negative-sense transcripts. Proc Natl Acad Sci U S A. 1994 Dec 20;91(26):12443–12447. doi: 10.1073/pnas.91.26.12443. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Becher P., Orlich M., Thiel H. J. Complete genomic sequence of border disease virus, a pestivirus from sheep. J Virol. 1998 Jun;72(6):5165–5173. doi: 10.1128/jvi.72.6.5165-5173.1998. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Brown E. A., Zhang H., Ping L. H., Lemon S. M. Secondary structure of the 5' nontranslated regions of hepatitis C virus and pestivirus genomic RNAs. Nucleic Acids Res. 1992 Oct 11;20(19):5041–5045. doi: 10.1093/nar/20.19.5041. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Bukh J., Purcell R. H., Miller R. H. Sequence analysis of the 5' noncoding region of hepatitis C virus. Proc Natl Acad Sci U S A. 1992 Jun 1;89(11):4942–4946. doi: 10.1073/pnas.89.11.4942. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Cahour A., Pletnev A., Vazielle-Falcoz M., Rosen L., Lai C. J. Growth-restricted dengue virus mutants containing deletions in the 5' noncoding region of the RNA genome. Virology. 1995 Feb 20;207(1):68–76. doi: 10.1006/viro.1995.1052. [DOI] [PubMed] [Google Scholar]
  6. Deng R., Brock K. V. 5' and 3' untranslated regions of pestivirus genome: primary and secondary structure analyses. Nucleic Acids Res. 1993 Apr 25;21(8):1949–1957. doi: 10.1093/nar/21.8.1949. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Duke G. M., Hoffman M. A., Palmenberg A. C. Sequence and structural elements that contribute to efficient encephalomyocarditis virus RNA translation. J Virol. 1992 Mar;66(3):1602–1609. doi: 10.1128/jvi.66.3.1602-1609.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Duke G. M., Osorio J. E., Palmenberg A. C. Attenuation of Mengo virus through genetic engineering of the 5' noncoding poly(C) tract. Nature. 1990 Feb 1;343(6257):474–476. doi: 10.1038/343474a0. [DOI] [PubMed] [Google Scholar]
  9. Guan H., Song C., Simon A. E. RNA promoters located on (-)-strands of a subviral RNA associated with turnip crinkle virus. RNA. 1997 Dec;3(12):1401–1412. [PMC free article] [PubMed] [Google Scholar]
  10. Hahn H., Palmenberg A. C. Encephalomyocarditis viruses with short poly(C) tracts are more virulent than their mengovirus counterparts. J Virol. 1995 Apr;69(4):2697–2699. doi: 10.1128/jvi.69.4.2697-2699.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Hanecak R., Brown-Driver V., Fox M. C., Azad R. F., Furusako S., Nozaki C., Ford C., Sasmor H., Anderson K. P. Antisense oligonucleotide inhibition of hepatitis C virus gene expression in transformed hepatocytes. J Virol. 1996 Aug;70(8):5203–5212. doi: 10.1128/jvi.70.8.5203-5212.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Hoffman M. A., Palmenberg A. C. Revertant analysis of J-K mutations in the encephalomyocarditis virus internal ribosomal entry site detects an altered leader protein. J Virol. 1996 Sep;70(9):6425–6430. doi: 10.1128/jvi.70.9.6425-6430.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Honda M., Brown E. A., Lemon S. M. Stability of a stem-loop involving the initiator AUG controls the efficiency of internal initiation of translation on hepatitis C virus RNA. RNA. 1996 Oct;2(10):955–968. [PMC free article] [PubMed] [Google Scholar]
  14. Honda M., Ping L. H., Rijnbrand R. C., Amphlett E., Clarke B., Rowlands D., Lemon S. M. Structural requirements for initiation of translation by internal ribosome entry within genome-length hepatitis C virus RNA. Virology. 1996 Aug 1;222(1):31–42. doi: 10.1006/viro.1996.0395. [DOI] [PubMed] [Google Scholar]
  15. Jang S. K., Kräusslich H. G., Nicklin M. J., Duke G. M., Palmenberg A. C., Wimmer E. A segment of the 5' nontranslated region of encephalomyocarditis virus RNA directs internal entry of ribosomes during in vitro translation. J Virol. 1988 Aug;62(8):2636–2643. doi: 10.1128/jvi.62.8.2636-2643.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Jang S. K., Wimmer E. Cap-independent translation of encephalomyocarditis virus RNA: structural elements of the internal ribosomal entry site and involvement of a cellular 57-kD RNA-binding protein. Genes Dev. 1990 Sep;4(9):1560–1572. doi: 10.1101/gad.4.9.1560. [DOI] [PubMed] [Google Scholar]
  17. Kamoshita N., Tsukiyama-Kohara K., Kohara M., Nomoto A. Genetic analysis of internal ribosomal entry site on hepatitis C virus RNA: implication for involvement of the highly ordered structure and cell type-specific transacting factors. Virology. 1997 Jun 23;233(1):9–18. doi: 10.1006/viro.1997.8600. [DOI] [PubMed] [Google Scholar]
  18. Kirkegaard K., Baltimore D. The mechanism of RNA recombination in poliovirus. Cell. 1986 Nov 7;47(3):433–443. doi: 10.1016/0092-8674(86)90600-8. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Kolykhalov A. A., Agapov E. V., Blight K. J., Mihalik K., Feinstone S. M., Rice C. M. Transmission of hepatitis C by intrahepatic inoculation with transcribed RNA. Science. 1997 Jul 25;277(5325):570–574. doi: 10.1126/science.277.5325.570. [DOI] [PubMed] [Google Scholar]
  20. Kolykhalov A. A., Feinstone S. M., Rice C. M. Identification of a highly conserved sequence element at the 3' terminus of hepatitis C virus genome RNA. J Virol. 1996 Jun;70(6):3363–3371. doi: 10.1128/jvi.70.6.3363-3371.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Le S. Y., Siddiqui A., Maizel J. V., Jr A common structural core in the internal ribosome entry sites of picornavirus, hepatitis C virus, and pestivirus. Virus Genes. 1996;12(2):135–147. doi: 10.1007/BF00572952. [DOI] [PubMed] [Google Scholar]
  22. Lieber A., He C. Y., Polyak S. J., Gretch D. R., Barr D., Kay M. A. Elimination of hepatitis C virus RNA in infected human hepatocytes by adenovirus-mediated expression of ribozymes. J Virol. 1996 Dec;70(12):8782–8791. doi: 10.1128/jvi.70.12.8782-8791.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Lima W. F., Brown-Driver V., Fox M., Hanecak R., Bruice T. W. Combinatorial screening and rational optimization for hybridization to folded hepatitis C virus RNA of oligonucleotides with biological antisense activity. J Biol Chem. 1997 Jan 3;272(1):626–638. [PubMed] [Google Scholar]
  24. Lu H. H., Wimmer E. Poliovirus chimeras replicating under the translational control of genetic elements of hepatitis C virus reveal unusual properties of the internal ribosomal entry site of hepatitis C virus. Proc Natl Acad Sci U S A. 1996 Feb 20;93(4):1412–1417. doi: 10.1073/pnas.93.4.1412. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Mandl C. W., Holzmann H., Meixner T., Rauscher S., Stadler P. F., Allison S. L., Heinz F. X. Spontaneous and engineered deletions in the 3' noncoding region of tick-borne encephalitis virus: construction of highly attenuated mutants of a flavivirus. J Virol. 1998 Mar;72(3):2132–2140. doi: 10.1128/jvi.72.3.2132-2140.1998. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Martin L. R., Palmenberg A. C. Tandem mengovirus 5' pseudoknots are linked to viral RNA synthesis, not poly(C)-mediated virulence. J Virol. 1996 Nov;70(11):8182–8186. doi: 10.1128/jvi.70.11.8182-8186.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Men R., Bray M., Clark D., Chanock R. M., Lai C. J. Dengue type 4 virus mutants containing deletions in the 3' noncoding region of the RNA genome: analysis of growth restriction in cell culture and altered viremia pattern and immunogenicity in rhesus monkeys. J Virol. 1996 Jun;70(6):3930–3937. doi: 10.1128/jvi.70.6.3930-3937.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Mendez E., Ruggli N., Collett M. S., Rice C. M. Infectious bovine viral diarrhea virus (strain NADL) RNA from stable cDNA clones: a cellular insert determines NS3 production and viral cytopathogenicity. J Virol. 1998 Jun;72(6):4737–4745. doi: 10.1128/jvi.72.6.4737-4745.1998. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Meyers G., Thiel H. J. Molecular characterization of pestiviruses. Adv Virus Res. 1996;47:53–118. doi: 10.1016/s0065-3527(08)60734-4. [DOI] [PubMed] [Google Scholar]
  30. Poole T. L., Wang C., Popp R. A., Potgieter L. N., Siddiqui A., Collett M. S. Pestivirus translation initiation occurs by internal ribosome entry. Virology. 1995 Jan 10;206(1):750–754. doi: 10.1016/s0042-6822(95)80003-4. [DOI] [PubMed] [Google Scholar]
  31. Pugachev K. V., Frey T. K. Effects of defined mutations in the 5' nontranslated region of rubella virus genomic RNA on virus viability and macromolecule synthesis. J Virol. 1998 Jan;72(1):641–650. doi: 10.1128/jvi.72.1.641-650.1998. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Reynolds J. E., Kaminski A., Kettinen H. J., Grace K., Clarke B. E., Carroll A. R., Rowlands D. J., Jackson R. J. Unique features of internal initiation of hepatitis C virus RNA translation. EMBO J. 1995 Dec 1;14(23):6010–6020. doi: 10.1002/j.1460-2075.1995.tb00289.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Rice C. M., Grakoui A., Galler R., Chambers T. J. Transcription of infectious yellow fever RNA from full-length cDNA templates produced by in vitro ligation. New Biol. 1989 Dec;1(3):285–296. [PubMed] [Google Scholar]
  34. Rice C. M., Levis R., Strauss J. H., Huang H. V. Production of infectious RNA transcripts from Sindbis virus cDNA clones: mapping of lethal mutations, rescue of a temperature-sensitive marker, and in vitro mutagenesis to generate defined mutants. J Virol. 1987 Dec;61(12):3809–3819. doi: 10.1128/jvi.61.12.3809-3819.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Rijnbrand R. C., Abbink T. E., Haasnoot P. C., Spaan W. J., Bredenbeek P. J. The influence of AUG codons in the hepatitis C virus 5' nontranslated region on translation and mapping of the translation initiation window. Virology. 1996 Dec 1;226(1):47–56. doi: 10.1006/viro.1996.0626. [DOI] [PubMed] [Google Scholar]
  36. Rijnbrand R., Bredenbeek P., van der Straaten T., Whetter L., Inchauspé G., Lemon S., Spaan W. Almost the entire 5' non-translated region of hepatitis C virus is required for cap-independent translation. FEBS Lett. 1995 May 29;365(2-3):115–119. doi: 10.1016/0014-5793(95)00458-l. [DOI] [PubMed] [Google Scholar]
  37. Rijnbrand R., van der Straaten T., van Rijn P. A., Spaan W. J., Bredenbeek P. J. Internal entry of ribosomes is directed by the 5' noncoding region of classical swine fever virus and is dependent on the presence of an RNA pseudoknot upstream of the initiation codon. J Virol. 1997 Jan;71(1):451–457. doi: 10.1128/jvi.71.1.451-457.1997. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Ruggli N., Tratschin J. D., Mittelholzer C., Hofmann M. A. Nucleotide sequence of classical swine fever virus strain Alfort/187 and transcription of infectious RNA from stably cloned full-length cDNA. J Virol. 1996 Jun;70(6):3478–3487. doi: 10.1128/jvi.70.6.3478-3487.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  39. Tanaka T., Kato N., Cho M. J., Sugiyama K., Shimotohno K. Structure of the 3' terminus of the hepatitis C virus genome. J Virol. 1996 May;70(5):3307–3312. doi: 10.1128/jvi.70.5.3307-3312.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  40. Tautz N., Elbers K., Stoll D., Meyers G., Thiel H. J. Serine protease of pestiviruses: determination of cleavage sites. J Virol. 1997 Jul;71(7):5415–5422. doi: 10.1128/jvi.71.7.5415-5422.1997. [DOI] [PMC free article] [PubMed] [Google Scholar]
  41. Troutt A. B., McHeyzer-Williams M. G., Pulendran B., Nossal G. J. Ligation-anchored PCR: a simple amplification technique with single-sided specificity. Proc Natl Acad Sci U S A. 1992 Oct 15;89(20):9823–9825. doi: 10.1073/pnas.89.20.9823. [DOI] [PMC free article] [PubMed] [Google Scholar]
  42. Tsukiyama-Kohara K., Iizuka N., Kohara M., Nomoto A. Internal ribosome entry site within hepatitis C virus RNA. J Virol. 1992 Mar;66(3):1476–1483. doi: 10.1128/jvi.66.3.1476-1483.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  43. Urabe M., Hasumi Y., Ogasawara Y., Matsushita T., Kamoshita N., Nomoto A., Colosi P., Kurtzman G. J., Tobita K., Ozawa K. A novel dicistronic AAV vector using a short IRES segment derived from hepatitis C virus genome. Gene. 1997 Oct 24;200(1-2):157–162. doi: 10.1016/s0378-1119(97)00412-5. [DOI] [PubMed] [Google Scholar]
  44. Wang C., Le S. Y., Ali N., Siddiqui A. An RNA pseudoknot is an essential structural element of the internal ribosome entry site located within the hepatitis C virus 5' noncoding region. RNA. 1995 Jul;1(5):526–537. [PMC free article] [PubMed] [Google Scholar]
  45. Wang C., Sarnow P., Siddiqui A. A conserved helical element is essential for internal initiation of translation of hepatitis C virus RNA. J Virol. 1994 Nov;68(11):7301–7307. doi: 10.1128/jvi.68.11.7301-7307.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  46. Wang C., Sarnow P., Siddiqui A. Translation of human hepatitis C virus RNA in cultured cells is mediated by an internal ribosome-binding mechanism. J Virol. 1993 Jun;67(6):3338–3344. doi: 10.1128/jvi.67.6.3338-3344.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  47. Wang C., Siddiqui A. Structure and function of the hepatitis C virus internal ribosome entry site. Curr Top Microbiol Immunol. 1995;203:99–115. doi: 10.1007/978-3-642-79663-0_5. [DOI] [PubMed] [Google Scholar]
  48. Xu J., Mendez E., Caron P. R., Lin C., Murcko M. A., Collett M. S., Rice C. M. Bovine viral diarrhea virus NS3 serine proteinase: polyprotein cleavage sites, cofactor requirements, and molecular model of an enzyme essential for pestivirus replication. J Virol. 1997 Jul;71(7):5312–5322. doi: 10.1128/jvi.71.7.5312-5322.1997. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from RNA are provided here courtesy of The RNA Society

RESOURCES