Skip to main content
RNA logoLink to RNA
. 1998 Nov;4(11):1444–1454. doi: 10.1017/s1355838298980967

Determination of 2'-hydroxyl and phosphate groups important for aminoacylation of Escherichia coli tRNAAsp: a nucleotide analogue interference study.

C S Vörtler 1, O Fedorova 1, T Persson 1, U Kutzke 1, F Eckstein 1
PMCID: PMC1369716  PMID: 9814764

Abstract

2'-Deoxynucleoside 5'-a-thiotriphosphates have been incorporated randomly, replacing any of the four nucleotides separately and at a low level in Escherichia colitRNA(AsP)transcripts. After some tRNAs were charged with the cognate aminoacyl-tRNA synthetase and biotinylated, charged and uncharged tRNAs were separated by binding to Streptavidin. A comparison of the iodine cleavage pattern of charged and uncharged tRNAs indicated positions of 2'-deoxyphosphorothioate interference with charging. To separate the 2'-deoxy from the phosphorothioate effect, the same sequence of reactions was performed with the corresponding NTPalphaS. Several positions were identified with a 2'-deoxy or a phosphorothioate effect. tRNAs with single deoxy substitutions at the identified positions were prepared by enzymatic ligation of chemically synthesized halves. The kinetics of charging these tRNAs were determined. The 2'-deoxy effects identified by the interference assay were confirmed, showing a reduction in charging efficiency of between 2.5-6-fold, except for the terminal A76 with a 25-fold reduction. Inspection of the X-ray structure of the tRNA-synthetase complex showed consistency of most of these findings. Critical 2'-deoxy groups are localized mainly on the proposed contact surface with the synthetase or at the interface of the two tRNA domains. The same overall picture emerged for critical phosphorothioates. With the exception of 2'-deoxy-adenosine-containing tRNAs, multiple 2'-deoxy-substituted tRNAs, prepared by ligation of halves, showed a much larger reduction in charging efficiency than the mono-substituted tRNAs, indicating an additive effect.

Full Text

The Full Text of this article is available as a PDF (620.4 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Aphasizhev R., Théobald-Dietrich A., Kostyuk D., Kochetkov S. N., Kisselev L., Giegé R., Fasiolo F. Structure and aminoacylation capacities of tRNA transcripts containing deoxyribonucleotides. RNA. 1997 Aug;3(8):893–904. [PMC free article] [PubMed] [Google Scholar]
  2. Arnez J. G., Moras D. Structural and functional considerations of the aminoacylation reaction. Trends Biochem Sci. 1997 Jun;22(6):211–216. doi: 10.1016/s0968-0004(97)01052-9. [DOI] [PubMed] [Google Scholar]
  3. Baidya N., Uhlenbeck O. C. The role of 2'-hydroxyl groups in an RNA-protein interaction. Biochemistry. 1995 Sep 26;34(38):12363–12368. doi: 10.1021/bi00038a033. [DOI] [PubMed] [Google Scholar]
  4. Bevilacqua P. C., Cech T. R. Minor-groove recognition of double-stranded RNA by the double-stranded RNA-binding domain from the RNA-activated protein kinase PKR. Biochemistry. 1996 Aug 6;35(31):9983–9994. doi: 10.1021/bi9607259. [DOI] [PubMed] [Google Scholar]
  5. Brautigam C. A., Steitz T. A. Structural principles for the inhibition of the 3'-5' exonuclease activity of Escherichia coli DNA polymerase I by phosphorothioates. J Mol Biol. 1998 Mar 27;277(2):363–377. doi: 10.1006/jmbi.1997.1586. [DOI] [PubMed] [Google Scholar]
  6. Cavarelli J., Rees B., Ruff M., Thierry J. C., Moras D. Yeast tRNA(Asp) recognition by its cognate class II aminoacyl-tRNA synthetase. Nature. 1993 Mar 11;362(6416):181–184. doi: 10.1038/362181a0. [DOI] [PubMed] [Google Scholar]
  7. Eckstein F. Nucleoside phosphorothioates. Annu Rev Biochem. 1985;54:367–402. doi: 10.1146/annurev.bi.54.070185.002055. [DOI] [PubMed] [Google Scholar]
  8. Eiler S., Boeglin M., Martin F., Eriani G., Gangloff J., Thierry J. C., Moras D. Crystallization of aspartyl-tRNA synthetase-tRNA(Asp) complex from Escherichia coli and first crystallographic results. J Mol Biol. 1992 Apr 20;224(4):1171–1173. doi: 10.1016/0022-2836(92)90478-3. [DOI] [PubMed] [Google Scholar]
  9. Giegé R., Puglisi J. D., Florentz C. tRNA structure and aminoacylation efficiency. Prog Nucleic Acid Res Mol Biol. 1993;45:129–206. doi: 10.1016/s0079-6603(08)60869-7. [DOI] [PubMed] [Google Scholar]
  10. Gish G., Eckstein F. DNA and RNA sequence determination based on phosphorothioate chemistry. Science. 1988 Jun 10;240(4858):1520–1522. doi: 10.1126/science.2453926. [DOI] [PubMed] [Google Scholar]
  11. Griffiths A. D., Potter B. V., Eperon I. C. Stereospecificity of nucleases towards phosphorothioate-substituted RNA: stereochemistry of transcription by T7 RNA polymerase. Nucleic Acids Res. 1987 May 26;15(10):4145–4162. doi: 10.1093/nar/15.10.4145. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Hardt W. D., Erdmann V. A., Hartmann R. K. Rp-deoxy-phosphorothioate modification interference experiments identify 2'-OH groups in RNase P RNA that are crucial to tRNA binding. RNA. 1996 Dec;2(12):1189–1198. [PMC free article] [PubMed] [Google Scholar]
  13. Holbrook S. R., Kim S. H. RNA crystallography. Biopolymers. 1997;44(1):3–21. doi: 10.1002/(SICI)1097-0282(1997)44:1<3::AID-BIP2>3.0.CO;2-Z. [DOI] [PubMed] [Google Scholar]
  14. Hou Y. M., Westhof E., Giegé R. An unusual RNA tertiary interaction has a role for the specific aminoacylation of a transfer RNA. Proc Natl Acad Sci U S A. 1993 Jul 15;90(14):6776–6780. doi: 10.1073/pnas.90.14.6776. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Huang Y., Eckstein F., Padilla R., Sousa R. Mechanism of ribose 2'-group discrimination by an RNA polymerase. Biochemistry. 1997 Jul 8;36(27):8231–8242. doi: 10.1021/bi962674l. [DOI] [PubMed] [Google Scholar]
  16. Igloi G. L. Affinity electrophoretic detection of primary amino groups in nucleic acids: application to modified bases of tRNA and to aminoacylation. Anal Biochem. 1992 Nov 1;206(2):363–368. doi: 10.1016/0003-2697(92)90379-l. [DOI] [PubMed] [Google Scholar]
  17. Iwai S., Pritchard C., Mann D. A., Karn J., Gait M. J. Recognition of the high affinity binding site in rev-response element RNA by the human immunodeficiency virus type-1 rev protein. Nucleic Acids Res. 1992 Dec 25;20(24):6465–6472. doi: 10.1093/nar/20.24.6465. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Jack A., Ladner J. E., Rhodes D., Brown R. S., Klug A. A crystallographic study of metal-binding to yeast phenylalanine transfer RNA. J Mol Biol. 1977 Apr 15;111(3):315–328. doi: 10.1016/s0022-2836(77)80054-5. [DOI] [PubMed] [Google Scholar]
  19. Khan A. S., Roe B. A. Aminoacylation of synthetic DNAs corresponding to Escherichia coli phenylalanine and lysine tRNAs. Science. 1988 Jul 1;241(4861):74–79. doi: 10.1126/science.2455342. [DOI] [PubMed] [Google Scholar]
  20. Kim C. H., Ryan D. E., Marciniec T., Abelson J. Site-specific deoxynucleotide substitutions in yeast U6 snRNA block splicing of pre-mRNA in vitro. EMBO J. 1997 Apr 15;16(8):2119–2129. doi: 10.1093/emboj/16.8.2119. [DOI] [PMC free article] [PubMed] [Google Scholar] [Retracted]
  21. Kreutzer R., Kern D., Giegé R., Rudinger J. Footprinting of tRNA(Phe) transcripts from Thermus thermophilus HB8 with the homologous phenylalanyl-tRNA synthetase reveals a novel mode of interaction. Nucleic Acids Res. 1995 Nov 25;23(22):4598–4602. doi: 10.1093/nar/23.22.4598. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Liu H., Musier-Forsyth K. Escherichia coli proline tRNA synthetase is sensitive to changes in the core region of tRNA(Pro). Biochemistry. 1994 Oct 25;33(42):12708–12714. doi: 10.1021/bi00208a023. [DOI] [PubMed] [Google Scholar]
  23. McClain W. H., Schneider J., Bhattacharya S., Gabriel K. The importance of tRNA backbone-mediated interactions with synthetase for aminoacylation. Proc Natl Acad Sci U S A. 1998 Jan 20;95(2):460–465. doi: 10.1073/pnas.95.2.460. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Milligan J. F., Uhlenbeck O. C. Determination of RNA-protein contacts using thiophosphate substitutions. Biochemistry. 1989 Apr 4;28(7):2849–2855. doi: 10.1021/bi00433a016. [DOI] [PubMed] [Google Scholar]
  25. Musier-Forsyth K., Scaringe S., Usman N., Schimmel P. Enzymatic aminoacylation of single-stranded RNA with an RNA cofactor. Proc Natl Acad Sci U S A. 1991 Jan 1;88(1):209–213. doi: 10.1073/pnas.88.1.209. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Musier-Forsyth K., Schimmel P. Functional contacts of a transfer RNA synthetase with 2'-hydroxyl groups in the RNA minor groove. Nature. 1992 Jun 11;357(6378):513–515. doi: 10.1038/357513a0. [DOI] [PubMed] [Google Scholar]
  27. Normanly J., Abelson J. tRNA identity. Annu Rev Biochem. 1989;58:1029–1049. doi: 10.1146/annurev.bi.58.070189.005121. [DOI] [PubMed] [Google Scholar]
  28. Perreault J. P., Pon R. T., Jiang M. Y., Usman N., Pika J., Ogilvie K. K., Cedergren R. The synthesis and functional evaluation of RNA and DNA polymers having the sequence of Escherichia coli tRNA(fMet). Eur J Biochem. 1989 Dec 8;186(1-2):87–93. doi: 10.1111/j.1432-1033.1989.tb15181.x. [DOI] [PubMed] [Google Scholar]
  29. Rudinger J., Puglisi J. D., Pütz J., Schatz D., Eckstein F., Florentz C., Giegé R. Determinant nucleotides of yeast tRNA(Asp) interact directly with aspartyl-tRNA synthetase. Proc Natl Acad Sci U S A. 1992 Jul 1;89(13):5882–5886. doi: 10.1073/pnas.89.13.5882. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Ruff M., Krishnaswamy S., Boeglin M., Poterszman A., Mitschler A., Podjarny A., Rees B., Thierry J. C., Moras D. Class II aminoacyl transfer RNA synthetases: crystal structure of yeast aspartyl-tRNA synthetase complexed with tRNA(Asp). Science. 1991 Jun 21;252(5013):1682–1689. doi: 10.1126/science.2047877. [DOI] [PubMed] [Google Scholar]
  31. Sampson J. R., Uhlenbeck O. C. Biochemical and physical characterization of an unmodified yeast phenylalanine transfer RNA transcribed in vitro. Proc Natl Acad Sci U S A. 1988 Feb;85(4):1033–1037. doi: 10.1073/pnas.85.4.1033. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Schatz D., Leberman R., Eckstein F. Interaction of Escherichia coli tRNA(Ser) with its cognate aminoacyl-tRNA synthetase as determined by footprinting with phosphorothioate-containing tRNA transcripts. Proc Natl Acad Sci U S A. 1991 Jul 15;88(14):6132–6136. doi: 10.1073/pnas.88.14.6132. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Schimmel P. R., Redfield A. G. Transfer RNA in solution: selected topics. Annu Rev Biophys Bioeng. 1980;9:181–221. doi: 10.1146/annurev.bb.09.060180.001145. [DOI] [PubMed] [Google Scholar]
  34. Sousa R., Padilla R. A mutant T7 RNA polymerase as a DNA polymerase. EMBO J. 1995 Sep 15;14(18):4609–4621. doi: 10.1002/j.1460-2075.1995.tb00140.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Steinberg S., Leclerc F., Cedergren R. Structural rules and conformational compensations in the tRNA L-form. J Mol Biol. 1997 Feb 21;266(2):269–282. doi: 10.1006/jmbi.1996.0803. [DOI] [PubMed] [Google Scholar]
  36. Strobel S. A., Ortoleva-Donnelly L., Ryder S. P., Cate J. H., Moncoeur E. Complementary sets of noncanonical base pairs mediate RNA helix packing in the group I intron active site. Nat Struct Biol. 1998 Jan;5(1):60–66. doi: 10.1038/nsb0198-60. [DOI] [PubMed] [Google Scholar]
  37. Strobel S. A., Shetty K. Defining the chemical groups essential for Tetrahymena group I intron function by nucleotide analog interference mapping. Proc Natl Acad Sci U S A. 1997 Apr 1;94(7):2903–2908. doi: 10.1073/pnas.94.7.2903. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Tuschl T., Eckstein F. Hammerhead ribozymes: importance of stem-loop II for activity. Proc Natl Acad Sci U S A. 1993 Aug 1;90(15):6991–6994. doi: 10.1073/pnas.90.15.6991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  39. Varshney U., Lee C. P., RajBhandary U. L. Direct analysis of aminoacylation levels of tRNAs in vivo. Application to studying recognition of Escherichia coli initiator tRNA mutants by glutaminyl-tRNA synthetase. J Biol Chem. 1991 Dec 25;266(36):24712–24718. [PubMed] [Google Scholar]
  40. Verma S., Eckstein F. Modified oligonucleotides: synthesis and strategy for users. Annu Rev Biochem. 1998;67:99–134. doi: 10.1146/annurev.biochem.67.1.99. [DOI] [PubMed] [Google Scholar]
  41. Yap L. P., Musier-Forsyth K. Transfer RNA aminoacylation: identification of a critical ribose 2'-hydroxyl-base interaction. RNA. 1995 Jun;1(4):418–424. [PMC free article] [PubMed] [Google Scholar]

Articles from RNA are provided here courtesy of The RNA Society

RESOURCES