Skip to main content
RNA logoLink to RNA
. 1998 Dec;4(12):1471–1480. doi: 10.1017/s1355838298981201

Directed hydroxyl radical probing of 16S ribosomal RNA in ribosomes containing Fe(II) tethered to ribosomal protein S20.

G M Culver 1, H F Noller 1
PMCID: PMC1369718  PMID: 9848646

Abstract

The 16S ribosomal RNA neighborhood of ribosomal protein S20 has been mapped, in both 30S subunits and 70S ribosomes, using directed hydroxyl radical probing. Cysteine residues were introduced at amino acid positions 14, 23, 49, and 57 of S20, and used for tethering 1-(p-bromoacetamidobenzyl)-Fe(II)-EDTA. In vitro reconstitution using Fe(II)-derivatized S20, together with the remaining small subunit ribosomal proteins and 16S ribosomal RNA (rRNA), yielded functional 30S subunits. Both 30S subunits and 70S ribosomes containing Fe(II)-S20 were purified and hydroxyl radicals were generated from the tethered Fe(II). Hydroxyl radical cleavage of the 16S rRNA backbone was monitored by primer extension. Different cleavage patterns in 16S rRNA were observed from Fe(II) tethered to each of the four positions, and these patterns were not significantly different in 30S and 70S ribosomes. Cleavage sites were mapped to positions 160-200, 320, and 340-350 in the 5' domain, and to positions 1427-1430 and 1439-1458 in the distal end of the penultimate stem of 16S rRNA, placing these regions near each other in three dimensions. These results are consistent with previous footprinting data that localized S20 near these 16S rRNA elements, providing evidence that S20, like S17, is located near the bottom of the 30S subunit.

Full Text

The Full Text of this article is available as a PDF (554.4 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Capel M. S., Engelman D. M., Freeborn B. R., Kjeldgaard M., Langer J. A., Ramakrishnan V., Schindler D. G., Schneider D. K., Schoenborn B. P., Sillers I. Y. A complete mapping of the proteins in the small ribosomal subunit of Escherichia coli. Science. 1987 Dec 4;238(4832):1403–1406. doi: 10.1126/science.3317832. [DOI] [PubMed] [Google Scholar]
  2. Cormack R. S., Mackie G. A. Mapping ribosomal protein S20-16 S rRNA interactions by mutagenesis. J Biol Chem. 1991 Oct 5;266(28):18525–18529. [PubMed] [Google Scholar]
  3. Dabbs E. R. Selection for Escherichia coli mutants with proteins missing from the ribosome. J Bacteriol. 1979 Nov;140(2):734–737. doi: 10.1128/jb.140.2.734-737.1979. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Daya-Grosjean L., Reinbolt J., Pongs O., Garrett R. A. A study of the regions of ribosomal proteins S4, S8, S15 and S20 that interact with 16 S RNA of Escherichia coli. FEBS Lett. 1974 Aug 30;44(3):253–256. doi: 10.1016/0014-5793(74)81151-8. [DOI] [PubMed] [Google Scholar]
  5. Dixon W. J., Hayes J. J., Levin J. R., Weidner M. F., Dombroski B. A., Tullius T. D. Hydroxyl radical footprinting. Methods Enzymol. 1991;208:380–413. doi: 10.1016/0076-6879(91)08021-9. [DOI] [PubMed] [Google Scholar]
  6. Donly B. C., Mackie G. A. Affinities of ribosomal protein S20 and C-terminal deletion mutants for 16S rRNA and S20 mRNA. Nucleic Acids Res. 1988 Feb 11;16(3):997–1010. doi: 10.1093/nar/16.3.997. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Ehresmann B., Backendorf C., Ehresmann C., Ebel J. P. Characterization of the regions from E. coli 16 S RNA covalently linked to ribosomal proteins S4 and S20 after ultraviolet irradiation. FEBS Lett. 1977 Jun 15;78(2):261–266. doi: 10.1016/0014-5793(77)80319-0. [DOI] [PubMed] [Google Scholar]
  8. Ehresmann C., Stiegler P., Carbon P., Ungewickell E., Garrett R. A. The topography of the 5' end of 16-S RNA in the presence and absence of ribosomal proteins S4 and S20. Eur J Biochem. 1980 Feb;103(3):439–446. doi: 10.1111/j.1432-1033.1980.tb05967.x. [DOI] [PubMed] [Google Scholar]
  9. Götz F., Fleischer C., Pon C. L., Gualerzi C. O. Subunit association defects in Escherichia coli ribosome mutants lacking proteins S20 and L11. Eur J Biochem. 1989 Jul 15;183(1):19–24. doi: 10.1111/j.1432-1033.1989.tb14890.x. [DOI] [PubMed] [Google Scholar]
  10. Heilek G. M., Marusak R., Meares C. F., Noller H. F. Directed hydroxyl radical probing of 16S rRNA using Fe(II) tethered to ribosomal protein S4. Proc Natl Acad Sci U S A. 1995 Feb 14;92(4):1113–1116. doi: 10.1073/pnas.92.4.1113. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Heilek G. M., Noller H. F. Directed hydroxyl radical probing of the rRNA neighborhood of ribosomal protein S13 using tethered Fe(II). RNA. 1996 Jun;2(6):597–602. [PMC free article] [PubMed] [Google Scholar]
  12. Heilek G. M., Noller H. F. Site-directed hydroxyl radical probing of the rRNA neighborhood of ribosomal protein S5. Science. 1996 Jun 14;272(5268):1659–1662. doi: 10.1126/science.272.5268.1659. [DOI] [PubMed] [Google Scholar]
  13. Held W. A., Ballou B., Mizushima S., Nomura M. Assembly mapping of 30 S ribosomal proteins from Escherichia coli. Further studies. J Biol Chem. 1974 May 25;249(10):3103–3111. [PubMed] [Google Scholar]
  14. Joseph S., Weiser B., Noller H. F. Mapping the inside of the ribosome with an RNA helical ruler. Science. 1997 Nov 7;278(5340):1093–1098. doi: 10.1126/science.278.5340.1093. [DOI] [PubMed] [Google Scholar]
  15. Kunkel T. A. Rapid and efficient site-specific mutagenesis without phenotypic selection. Proc Natl Acad Sci U S A. 1985 Jan;82(2):488–492. doi: 10.1073/pnas.82.2.488. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Lill R., Robertson J. M., Wintermeyer W. Affinities of tRNA binding sites of ribosomes from Escherichia coli. Biochemistry. 1986 Jun 3;25(11):3245–3255. doi: 10.1021/bi00359a025. [DOI] [PubMed] [Google Scholar]
  17. Mackie G. A., Zimmermann R. A. RNA--protein interactions in the ribosome. IV. Structure and properties of binding sites for proteins S4, S16/S17 and S20 in the 16S RNA. J Mol Biol. 1978 May 5;121(1):17–39. doi: 10.1016/0022-2836(78)90260-7. [DOI] [PubMed] [Google Scholar]
  18. Mizushima S., Nomura M. Assembly mapping of 30S ribosomal proteins from E. coli. Nature. 1970 Jun 27;226(5252):1214–1214. doi: 10.1038/2261214a0. [DOI] [PubMed] [Google Scholar]
  19. Moazed D., Noller H. F. Transfer RNA shields specific nucleotides in 16S ribosomal RNA from attack by chemical probes. Cell. 1986 Dec 26;47(6):985–994. doi: 10.1016/0092-8674(86)90813-5. [DOI] [PubMed] [Google Scholar]
  20. Muto A., Ehresmann C., Fellner P., Zimmermann R. A. RNA-protein interactions in the ribosome. I. Characterization and ribonuclease digestion of 16 S RNA-ribosomal protein complexes. J Mol Biol. 1974 Jun 25;86(2):411–432. doi: 10.1016/0022-2836(74)90028-x. [DOI] [PubMed] [Google Scholar]
  21. Muto A., Zimmermann R. A. RNA--protein interactions in the ribosome. III. Conformation and stability of ribosomal protein binding sites in the 16 S RNA. J Mol Biol. 1978 May 5;121(1):1–15. doi: 10.1016/0022-2836(78)90259-0. [DOI] [PubMed] [Google Scholar]
  22. NIRENBERG M., LEDER P. RNA CODEWORDS AND PROTEIN SYNTHESIS. THE EFFECT OF TRINUCLEOTIDES UPON THE BINDING OF SRNA TO RIBOSOMES. Science. 1964 Sep 25;145(3639):1399–1407. doi: 10.1126/science.145.3639.1399. [DOI] [PubMed] [Google Scholar]
  23. Nomura M., Mizushima S., Ozaki M., Traub P., Lowry C. V. Structure and function of ribosomes and their molecular components. Cold Spring Harb Symp Quant Biol. 1969;34:49–61. doi: 10.1101/sqb.1969.034.01.009. [DOI] [PubMed] [Google Scholar]
  24. Powers T., Daubresse G., Noller H. F. Dynamics of in vitro assembly of 16 S rRNA into 30 S ribosomal subunits. J Mol Biol. 1993 Jul 20;232(2):362–374. doi: 10.1006/jmbi.1993.1396. [DOI] [PubMed] [Google Scholar]
  25. Powers T., Noller H. F. Hydroxyl radical footprinting of ribosomal proteins on 16S rRNA. RNA. 1995 Apr;1(2):194–209. [PMC free article] [PubMed] [Google Scholar]
  26. Rana T. M., Meares C. F. Transfer of oxygen from an artificial protease to peptide carbon during proteolysis. Proc Natl Acad Sci U S A. 1991 Dec 1;88(23):10578–10582. doi: 10.1073/pnas.88.23.10578. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Rinke J., Ross A., Brimacombe R. Characterisation of RNA fragments obtained by mild nuclease digestion of 30-S ribosomal subunits from Escherichia coli. Eur J Biochem. 1977 Jun 1;76(1):189–196. doi: 10.1111/j.1432-1033.1977.tb11584.x. [DOI] [PubMed] [Google Scholar]
  28. Rydén-Aulin M., Shaoping Z., Kylsten P., Isaksson L. A. Ribosome activity and modification of 16S RNA are influenced by deletion of ribosomal protein S20. Mol Microbiol. 1993 Mar;7(6):983–992. doi: 10.1111/j.1365-2958.1993.tb01190.x. [DOI] [PubMed] [Google Scholar]
  29. Schwedler G., Albrecht-Ehrlich R., Rak K. H. Immunoelectron microscopic localization of ribosomal proteins BS8, BS9, BS20, BL3 and BL21 on the surface of 30S and 50S subunits from Bacillus stearothermophilus. Eur J Biochem. 1993 Oct 1;217(1):361–369. doi: 10.1111/j.1432-1033.1993.tb18254.x. [DOI] [PubMed] [Google Scholar]
  30. Sogin M., Pace B., Pace N. R., Woese C. R. Primary structural relationship of p16 to m16 ribosomal RNA. Nat New Biol. 1971 Jul 14;232(28):48–49. doi: 10.1038/newbio232048a0. [DOI] [PubMed] [Google Scholar]
  31. Stern S., Changchien L. M., Craven G. R., Noller H. F. Interaction of proteins S16, S17 and S20 with 16 S ribosomal RNA. J Mol Biol. 1988 Mar 20;200(2):291–299. doi: 10.1016/0022-2836(88)90241-0. [DOI] [PubMed] [Google Scholar]
  32. Stern S., Moazed D., Noller H. F. Structural analysis of RNA using chemical and enzymatic probing monitored by primer extension. Methods Enzymol. 1988;164:481–489. doi: 10.1016/s0076-6879(88)64064-x. [DOI] [PubMed] [Google Scholar]
  33. Studier F. W., Rosenberg A. H., Dunn J. J., Dubendorff J. W. Use of T7 RNA polymerase to direct expression of cloned genes. Methods Enzymol. 1990;185:60–89. doi: 10.1016/0076-6879(90)85008-c. [DOI] [PubMed] [Google Scholar]
  34. Stöffler G., Daya L., Rak K. H., Garrett R. A. Ribosomal proteins. XXVI. The number of specific protein binding sites on 16 s and 23 s RNA of Escherichia coli. J Mol Biol. 1971 Dec 14;62(2):411–414. doi: 10.1016/0022-2836(71)90437-2. [DOI] [PubMed] [Google Scholar]
  35. Traub P., Nomura M. Structure and function of E. coli ribosomes. V. Reconstitution of functionally active 30S ribosomal particles from RNA and proteins. Proc Natl Acad Sci U S A. 1968 Mar;59(3):777–784. doi: 10.1073/pnas.59.3.777. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Ungewickell E., Garrett R., Ehresmann C., Stiegler P., Fellner P. An investigation of the 16-S RNA binding sites of ribosomal proteins S4, S8, S15, and S20 FROM Escherichia coli. Eur J Biochem. 1975 Feb 3;51(1):165–180. doi: 10.1111/j.1432-1033.1975.tb03917.x. [DOI] [PubMed] [Google Scholar]
  37. Weitzmann C. J., Cunningham P. R., Nurse K., Ofengand J. Chemical evidence for domain assembly of the Escherichia coli 30S ribosome. FASEB J. 1993 Jan;7(1):177–180. doi: 10.1096/fasebj.7.1.7916699. [DOI] [PubMed] [Google Scholar]
  38. Zimmermann R. A., Mackie G. A., Muto A., Garrett R. A., Ungewickell E., Ehresmann C., Stiegler P., Ebel J. P., Fellner P. Location and characteristics of ribosomal protein binding sites in the 16S RNA of Escherichia coli. Nucleic Acids Res. 1975 Feb;2(2):279–302. doi: 10.1093/nar/2.2.279. [DOI] [PMC free article] [PubMed] [Google Scholar]
  39. Zimmermann R. A., Muto A., Mackie G. A. RNA-protein interactions in the ribosome. II. Binding of ribosomal proteins to isolated fragments of the 16 S RNA. J Mol Biol. 1974 Jun 25;86(2):433–450. doi: 10.1016/0022-2836(74)90029-1. [DOI] [PubMed] [Google Scholar]

Articles from RNA are provided here courtesy of The RNA Society

RESOURCES