Abstract
The fragmentation of group II introns without concomitant loss of splicing competence is illustrated by extraordinary gene arrangements in plant mitochondrial genomes. The mitochondrial genes nad1, nad2, and nad5, all encoding subunits of the NADH dehydrogenase, require trans-splicing for functional assembly of their mRNAs in flowering plants. Tracing the origins of trans-splicing group II introns shows that they have evolved from formerly cis-arranged homologs whose descendants can still be identified in lineages of early branching land plants. In this contribution we present the full set of ancestor introns for all five conserved mitochondrial trans-splicing positions. These introns are strikingly small in the quillwort Isoetes lacustris, the continuous nad2 gene intron in this species representing the smallest (389 nt) land plant group II intron yet identified. cDNA analysis shows correct splicing of the introns in vivo and also identifies frequent RNA editing events in the flanking nad gene exons. Other representatives of the ancestral cis-arranged introns are identified in the fern Osmunda regalis, the horsetail Equisetum telmateia, and the hornwort Anthoceros crispulus. Only the now identified intron in Osmunda carries significant traces of a former maturase reading frame. The identification of a continuous homolog in Anthoceros demonstrates that intron invasion into the affected genes in some cases predated the split of vascular and nonvascular plants more than 400 million years ago. As an alternative to disruption after size increase, the respective introns can get secondarily lost in certain lineages.
Full Text
The Full Text of this article is available as a PDF (818.3 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Altschul S. F., Madden T. L., Schäffer A. A., Zhang J., Zhang Z., Miller W., Lipman D. J. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res. 1997 Sep 1;25(17):3389–3402. doi: 10.1093/nar/25.17.3389. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Binder S., Marchfelder A., Brennicke A., Wissinger B. RNA editing in trans-splicing intron sequences of nad2 mRNAs in Oenothera mitochondria. J Biol Chem. 1992 Apr 15;267(11):7615–7623. [PubMed] [Google Scholar]
- Carrillo C., Bonen L. RNA editing status of nad7 intron domains in wheat mitochondria. Nucleic Acids Res. 1997 Jan 15;25(2):403–409. doi: 10.1093/nar/25.2.403. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Chapdelaine Y., Bonen L. The wheat mitochondrial gene for subunit I of the NADH dehydrogenase complex: a trans-splicing model for this gene-in-pieces. Cell. 1991 May 3;65(3):465–472. doi: 10.1016/0092-8674(91)90464-a. [DOI] [PubMed] [Google Scholar]
- Conklin P. L., Wilson R. K., Hanson M. R. Multiple trans-splicing events are required to produce a mature nad1 transcript in a plant mitochondrion. Genes Dev. 1991 Aug;5(8):1407–1415. doi: 10.1101/gad.5.8.1407. [DOI] [PubMed] [Google Scholar]
- Devereux J., Haeberli P., Smithies O. A comprehensive set of sequence analysis programs for the VAX. Nucleic Acids Res. 1984 Jan 11;12(1 Pt 1):387–395. doi: 10.1093/nar/12.1part1.387. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Doetsch N. A., Thompson M. D., Hallick R. B. A maturase-encoding group III twintron is conserved in deeply rooted euglenoid species: are group III introns the chicken or the egg? Mol Biol Evol. 1998 Jan;15(1):76–86. doi: 10.1093/oxfordjournals.molbev.a025850. [DOI] [PubMed] [Google Scholar]
- Goldschmidt-Clermont M., Choquet Y., Girard-Bascou J., Michel F., Schirmer-Rahire M., Rochaix J. D. A small chloroplast RNA may be required for trans-splicing in Chlamydomonas reinhardtii. Cell. 1991 Apr 5;65(1):135–143. doi: 10.1016/0092-8674(91)90415-u. [DOI] [PubMed] [Google Scholar]
- Grivell L. A. Transposition: mobile introns get into line. Curr Biol. 1996 Jan 1;6(1):48–51. doi: 10.1016/s0960-9822(02)00420-7. [DOI] [PubMed] [Google Scholar]
- Handa H., Mizobuchi-Fukuoka R., Pinyarat W. The rapeseed mitochondrial gene for subunit 2 of the NADH dehydrogenase complex: a trans-spliced structure is conserved in one of the smallest plant mitochondrial genomes. Curr Genet. 1997 Apr;31(4):336–342. doi: 10.1007/s002940050213. [DOI] [PubMed] [Google Scholar]
- Hetzer M., Wurzer G., Schweyen R. J., Mueller M. W. Trans-activation of group II intron splicing by nuclear U5 snRNA. Nature. 1997 Mar 27;386(6623):417–420. doi: 10.1038/386417a0. [DOI] [PubMed] [Google Scholar]
- Jacquier A. Self-splicing group II and nuclear pre-mRNA introns: how similar are they? Trends Biochem Sci. 1990 Sep;15(9):351–354. doi: 10.1016/0968-0004(90)90075-m. [DOI] [PubMed] [Google Scholar]
- Knoop V., Altwasser M., Brennicke A. A tripartite group II intron in mitochondria of an angiosperm plant. Mol Gen Genet. 1997 Jul;255(3):269–276. doi: 10.1007/s004380050497. [DOI] [PubMed] [Google Scholar]
- Knoop V., Schuster W., Wissinger B., Brennicke A. Trans splicing integrates an exon of 22 nucleotides into the nad5 mRNA in higher plant mitochondria. EMBO J. 1991 Nov;10(11):3483–3493. doi: 10.1002/j.1460-2075.1991.tb04912.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kück U., Choquet Y., Schneider M., Dron M., Bennoun P. Structural and transcription analysis of two homologous genes for the P700 chlorophyll a-apoproteins in Chlamydomonas reinhardii: evidence for in vivo trans-splicing. EMBO J. 1987 Aug;6(8):2185–2195. doi: 10.1002/j.1460-2075.1987.tb02489.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Malek O., Brennicke A., Knoop V. Evolution of trans-splicing plant mitochondrial introns in pre-Permian times. Proc Natl Acad Sci U S A. 1997 Jan 21;94(2):553–558. doi: 10.1073/pnas.94.2.553. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Malek O., Lättig K., Hiesel R., Brennicke A., Knoop V. RNA editing in bryophytes and a molecular phylogeny of land plants. EMBO J. 1996 Mar 15;15(6):1403–1411. [PMC free article] [PubMed] [Google Scholar]
- Michel F., Ferat J. L. Structure and activities of group II introns. Annu Rev Biochem. 1995;64:435–461. doi: 10.1146/annurev.bi.64.070195.002251. [DOI] [PubMed] [Google Scholar]
- Michel F., Umesono K., Ozeki H. Comparative and functional anatomy of group II catalytic introns--a review. Gene. 1989 Oct 15;82(1):5–30. doi: 10.1016/0378-1119(89)90026-7. [DOI] [PubMed] [Google Scholar]
- Pereira de Souza A., Jubier M. F., Delcher E., Lancelin D., Lejeune B. A trans-splicing model for the expression of the tripartite nad5 gene in wheat and maize mitochondria. Plant Cell. 1991 Dec;3(12):1363–1378. doi: 10.1105/tpc.3.12.1363. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sharp P. A. "Five easy pieces". Science. 1991 Nov 1;254(5032):663–663. doi: 10.1126/science.1948046. [DOI] [PubMed] [Google Scholar]
- Thompson M. D., Zhang L., Hong L., Hallick R. B. Extensive structural conservation exists among several homologs of two Euglena chloroplast group II introns. Mol Gen Genet. 1997 Dec;257(1):45–54. doi: 10.1007/s004380050622. [DOI] [PubMed] [Google Scholar]
- Unseld M., Marienfeld J. R., Brandt P., Brennicke A. The mitochondrial genome of Arabidopsis thaliana contains 57 genes in 366,924 nucleotides. Nat Genet. 1997 Jan;15(1):57–61. doi: 10.1038/ng0197-57. [DOI] [PubMed] [Google Scholar]
- Weiner A. M. mRNA splicing and autocatalytic introns: distant cousins or the products of chemical determinism? Cell. 1993 Jan 29;72(2):161–164. doi: 10.1016/0092-8674(93)90654-9. [DOI] [PubMed] [Google Scholar]
- Wissinger B., Schuster W., Brennicke A. Trans splicing in Oenothera mitochondria: nad1 mRNAs are edited in exon and trans-splicing group II intron sequences. Cell. 1991 May 3;65(3):473–482. doi: 10.1016/0092-8674(91)90465-b. [DOI] [PubMed] [Google Scholar]
- Yeo C. C., Tham J. M., Yap M. W., Poh C. L. Group II intron from Pseudomonas alcaligenes NCIB 9867 (P25X): entrapment in plasmid RP4 and sequence analysis. Microbiology. 1997 Aug;143(Pt 8):2833–2840. doi: 10.1099/00221287-143-8-2833. [DOI] [PubMed] [Google Scholar]