Skip to main content
RNA logoLink to RNA
. 1999 Jan;5(1):39–48. doi: 10.1017/s1355838299981335

A minor fraction of basic fibroblast growth factor mRNA is deaminated in Xenopus stage VI and matured oocytes.

L Saccomanno 1, B L Bass 1
PMCID: PMC1369738  PMID: 9917065

Abstract

Adenosine deaminases that act on RNA (ADARs) convert adenosine to inosine in double-stranded regions of RNA. ADAR activity is in the nucleus in Xenopus laevis stage VI oocytes, and released into the cytoplasm at oocyte maturation. We previously demonstrated that a cytoplasmic double-stranded RNA (dsRNA) binding factor(s), cyto-dsRBP, protects microinjected dsRNA from the ADAR released at maturation. Here we describe experiments to determine whether an endogenous dsRNA, the duplex formed between sense and antisense transcripts of basic fibroblast growth factor (bFGF), is protected in a similar manner. Consistent with the presence of cyto-dsRBP, we observed that the majority of bFGF RNA was not deaminated, before or after maturation. However, a minor fraction of the bFGF RNA was deaminated whether the RNA was isolated from stage VI oocytes or matured oocytes. Since ADAR activity is in the nucleus in stage VI oocytes, our results suggest that a fraction of the bFGF RNAs are hybridized in the nucleus and are ADAR substrates. Adenosine deaminations result in A-to-G changes in cDNAs, so we quantified the fraction of modified molecules using restriction-enzyme assays of RT-PCR products. Caveats due to recombination during RT-PCR are discussed.

Full Text

The Full Text of this article is available as a PDF (427.3 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. BASILIO C., WAHBA A. J., LENGYEL P., SPEYER J. F., OCHOA S. Synthetic polynucleotides and the amino acid code. V. Proc Natl Acad Sci U S A. 1962 Apr 15;48:613–616. doi: 10.1073/pnas.48.4.613. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Bass B. L. RNA editing and hypermutation by adenosine deamination. Trends Biochem Sci. 1997 May;22(5):157–162. doi: 10.1016/s0968-0004(97)01035-9. [DOI] [PubMed] [Google Scholar]
  3. Billeter M. A., Cattaneo R., Spielhofer P., Kaelin K., Huber M., Schmid A., Baczko K., ter Meulen V. Generation and properties of measles virus mutations typically associated with subacute sclerosing panencephalitis. Ann N Y Acad Sci. 1994 Jun 6;724:367–377. doi: 10.1111/j.1749-6632.1994.tb38934.x. [DOI] [PubMed] [Google Scholar]
  4. Burns C. M., Chu H., Rueter S. M., Hutchinson L. K., Canton H., Sanders-Bush E., Emeson R. B. Regulation of serotonin-2C receptor G-protein coupling by RNA editing. Nature. 1997 May 15;387(6630):303–308. doi: 10.1038/387303a0. [DOI] [PubMed] [Google Scholar]
  5. Cattaneo R. Biased (A-->I) hypermutation of animal RNA virus genomes. Curr Opin Genet Dev. 1994 Dec;4(6):895–900. doi: 10.1016/0959-437x(94)90076-0. [DOI] [PubMed] [Google Scholar]
  6. Chirgwin J. M., Przybyla A. E., MacDonald R. J., Rutter W. J. Isolation of biologically active ribonucleic acid from sources enriched in ribonuclease. Biochemistry. 1979 Nov 27;18(24):5294–5299. doi: 10.1021/bi00591a005. [DOI] [PubMed] [Google Scholar]
  7. Denhardt D. T. Mechanism of action of antisense RNA. Sometime inhibition of transcription, processing, transport, or translation. Ann N Y Acad Sci. 1992 Oct 28;660:70–76. doi: 10.1111/j.1749-6632.1992.tb21059.x. [DOI] [PubMed] [Google Scholar]
  8. Dolnick B. J. Naturally occurring antisense RNA. Pharmacol Ther. 1997 Sep;75(3):179–184. doi: 10.1016/s0163-7258(97)00050-8. [DOI] [PubMed] [Google Scholar]
  9. Grothe C., Meisinger C. Fibroblast growth factor (FGF)-2 sense and antisense mRNA and FGF receptor type 1 mRNA are present in the embryonic and adult rat nervous system: specific detection by nuclease protection assay. Neurosci Lett. 1995 Sep 15;197(3):175–178. doi: 10.1016/0304-3940(95)11917-l. [DOI] [PubMed] [Google Scholar]
  10. Kimelman D., Abraham J. A., Haaparanta T., Palisi T. M., Kirschner M. W. The presence of fibroblast growth factor in the frog egg: its role as a natural mesoderm inducer. Science. 1988 Nov 18;242(4881):1053–1056. doi: 10.1126/science.3194757. [DOI] [PubMed] [Google Scholar]
  11. Kimelman D., Kirschner M. W. An antisense mRNA directs the covalent modification of the transcript encoding fibroblast growth factor in Xenopus oocytes. Cell. 1989 Nov 17;59(4):687–696. doi: 10.1016/0092-8674(89)90015-9. [DOI] [PubMed] [Google Scholar]
  12. Knee R., Li A. W., Murphy P. R. Characterization and tissue-specific expression of the rat basic fibroblast growth factor antisense mRNA and protein. Proc Natl Acad Sci U S A. 1997 May 13;94(10):4943–4947. doi: 10.1073/pnas.94.10.4943. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Knee R., Murphy P. R. Regulation of gene expression by natural antisense RNA transcripts. Neurochem Int. 1997 Sep;31(3):379–392. doi: 10.1016/s0197-0186(96)00108-8. [DOI] [PubMed] [Google Scholar]
  14. Kumar M., Carmichael G. G. Nuclear antisense RNA induces extensive adenosine modifications and nuclear retention of target transcripts. Proc Natl Acad Sci U S A. 1997 Apr 15;94(8):3542–3547. doi: 10.1073/pnas.94.8.3542. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Li A. W., Too C. K., Murphy P. R. The basic fibroblast growth factor (FGF-2) antisense RNA (GFG) is translated into a MutT-related protein in vivo. Biochem Biophys Res Commun. 1996 Jun 5;223(1):19–23. doi: 10.1006/bbrc.1996.0839. [DOI] [PubMed] [Google Scholar]
  16. Luo G. X., Taylor J. Template switching by reverse transcriptase during DNA synthesis. J Virol. 1990 Sep;64(9):4321–4328. doi: 10.1128/jvi.64.9.4321-4328.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Maas S., Melcher T., Seeburg P. H. Mammalian RNA-dependent deaminases and edited mRNAs. Curr Opin Cell Biol. 1997 Jun;9(3):343–349. doi: 10.1016/s0955-0674(97)80006-3. [DOI] [PubMed] [Google Scholar]
  18. Meyerhans A., Vartanian J. P., Wain-Hobson S. DNA recombination during PCR. Nucleic Acids Res. 1990 Apr 11;18(7):1687–1691. doi: 10.1093/nar/18.7.1687. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Murphy D. G., Dimock K., Kang C. Y. Numerous transitions in human parainfluenza virus 3 RNA recovered from persistently infected cells. Virology. 1991 Apr;181(2):760–763. doi: 10.1016/0042-6822(91)90913-v. [DOI] [PubMed] [Google Scholar]
  20. Murphy P. R., Knee R. S. Identification and characterization of an antisense RNA transcript (gfg) from the human basic fibroblast growth factor gene. Mol Endocrinol. 1994 Jul;8(7):852–859. doi: 10.1210/mend.8.7.7984147. [DOI] [PubMed] [Google Scholar]
  21. Nishikura K., Yoo C., Kim U., Murray J. M., Estes P. A., Cash F. E., Liebhaber S. A. Substrate specificity of the dsRNA unwinding/modifying activity. EMBO J. 1991 Nov;10(11):3523–3532. doi: 10.1002/j.1460-2075.1991.tb04916.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. O'Hara P. J., Nichol S. T., Horodyski F. M., Holland J. J. Vesicular stomatitis virus defective interfering particles can contain extensive genomic sequence rearrangements and base substitutions. Cell. 1984 Apr;36(4):915–924. doi: 10.1016/0092-8674(84)90041-2. [DOI] [PubMed] [Google Scholar]
  23. Odelberg S. J., Weiss R. B., Hata A., White R. Template-switching during DNA synthesis by Thermus aquaticus DNA polymerase I. Nucleic Acids Res. 1995 Jun 11;23(11):2049–2057. doi: 10.1093/nar/23.11.2049. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Ouhammouch M., Brody E. N. Temperature-dependent template switching during in vitro cDNA synthesis by the AMV-reverse transcriptase. Nucleic Acids Res. 1992 Oct 25;20(20):5443–5450. doi: 10.1093/nar/20.20.5443. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Petschek J. P., Mermer M. J., Scheckelhoff M. R., Simone A. A., Vaughn J. C. RNA editing in Drosophila 4f-rnp gene nuclear transcripts by multiple A-to-G conversions. J Mol Biol. 1996 Jun 28;259(5):885–890. doi: 10.1006/jmbi.1996.0365. [DOI] [PubMed] [Google Scholar]
  26. Polson A. G., Bass B. L., Casey J. L. RNA editing of hepatitis delta virus antigenome by dsRNA-adenosine deaminase. Nature. 1996 Apr 4;380(6573):454–456. doi: 10.1038/380454a0. [DOI] [PubMed] [Google Scholar]
  27. Polson A. G., Bass B. L. Preferential selection of adenosines for modification by double-stranded RNA adenosine deaminase. EMBO J. 1994 Dec 1;13(23):5701–5711. doi: 10.1002/j.1460-2075.1994.tb06908.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Rueda P., García-Barreno B., Melero J. A. Loss of conserved cysteine residues in the attachment (G) glycoprotein of two human respiratory syncytial virus escape mutants that contain multiple A-G substitutions (hypermutations). Virology. 1994 Feb;198(2):653–662. doi: 10.1006/viro.1994.1077. [DOI] [PubMed] [Google Scholar]
  29. Saccomanno L., Bass B. L. The cytoplasm of Xenopus oocytes contains a factor that protects double-stranded RNA from adenosine-to-inosine modification. Mol Cell Biol. 1994 Aug;14(8):5425–5432. doi: 10.1128/mcb.14.8.5425. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Saiki R. K., Gelfand D. H., Stoffel S., Scharf S. J., Higuchi R., Horn G. T., Mullis K. B., Erlich H. A. Primer-directed enzymatic amplification of DNA with a thermostable DNA polymerase. Science. 1988 Jan 29;239(4839):487–491. doi: 10.1126/science.2448875. [DOI] [PubMed] [Google Scholar]
  31. Scadden A. D., Smith C. W. A ribonuclease specific for inosine-containing RNA: a potential role in antiviral defence? EMBO J. 1997 Apr 15;16(8):2140–2149. doi: 10.1093/emboj/16.8.2140. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Volk R., Köster M., Pöting A., Hartmann L., Knöchel W. An antisense transcript from the Xenopus laevis bFGF gene coding for an evolutionarily conserved 24 kd protein. EMBO J. 1989 Oct;8(10):2983–2988. doi: 10.1002/j.1460-2075.1989.tb08448.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Zúiga Mejía Borja A., Meijers C., Zeller R. Expression of alternatively spliced bFGF first coding exons and antisense mRNAs during chicken embryogenesis. Dev Biol. 1993 May;157(1):110–118. doi: 10.1006/dbio.1993.1116. [DOI] [PubMed] [Google Scholar]

Articles from RNA are provided here courtesy of The RNA Society

RESOURCES