Skip to main content
RNA logoLink to RNA
. 1999 Jan;5(1):117–130. doi: 10.1017/s1355838299981530

Coordinate repression of a trio of neuron-specific splicing events by the splicing regulator PTB.

L Zhang 1, W Liu 1, P J Grabowski 1
PMCID: PMC1369744  PMID: 9917071

Abstract

In this study, we demonstrate the ability of the polypyrimidine tract binding protein PTB to function as a coordinator of splicing regulation for a trio of neuron-specific exons that are subject to developmental splicing changes in the rat cerebellum. Three neuron-specific exons that show positive regulation are derived from the GABA(A) receptor gamma2 subunit 24 nucleotide exon, clathrin light chain B exon EN, and N-methyl-D-aspartate receptor NR1 subunit exon 5 pre-mRNAs. The functional activity of splicing repressor signals located in the 3' splice site regions adjacent to the neural exons is shown using an alternative splicing switch assay, in which these short RNA sequences function in trans to switch splicing to the neural pathway in HeLa splicing reactions. Parallel UV crosslinking/competition assays demonstrate selective binding of PTB in comparison to substantially lower binding at adjacent, nonneural 3' splice sites. Substantially lower PTB binding and splicing switch activity is also observed for the 3' splice site of NMDA exon 21, which is subject to negative regulation in cerebellum tissue in the same time frame. In splicing active neural extracts, the balance of control shifts to positive regulation, and this shift correlates with a PTB status that is predominantly the neural form. In this context, the addition of recombinant PTB is sufficient to switch splicing to the nonneural pathway. The neural extracts also reveal specific binding of the CUG triplet repeat binding protein to a subset of regulatory 3' splice site regions. These interactions may interfere with PTB function or modulate splicing levels in a substrate-specific manner within neural tissue. Together these results strengthen the evidence that PTB is a splicing regulator with multiple targets and demonstrate its ability to discriminate among neural and nonneural substrates. Thus, a variety of mechanisms that counterbalance the splicing repressor function of PTB in neural tissue are capable of mediating developmental splicing control. Altered expression of PTB isoforms during cerebellar development, as documented by Western blot analysis, is proposed to be a contributing mechanism.

Full Text

The Full Text of this article is available as a PDF (880.6 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Ashiya M., Grabowski P. J. A neuron-specific splicing switch mediated by an array of pre-mRNA repressor sites: evidence of a regulatory role for the polypyrimidine tract binding protein and a brain-specific PTB counterpart. RNA. 1997 Sep;3(9):996–1015. [PMC free article] [PubMed] [Google Scholar]
  2. Bennett M., Michaud S., Kingston J., Reed R. Protein components specifically associated with prespliceosome and spliceosome complexes. Genes Dev. 1992 Oct;6(10):1986–2000. doi: 10.1101/gad.6.10.1986. [DOI] [PubMed] [Google Scholar]
  3. Black D. L. Splicing in the inner ear: a familiar tune, but what are the instruments? Neuron. 1998 Feb;20(2):165–168. doi: 10.1016/s0896-6273(00)80444-4. [DOI] [PubMed] [Google Scholar]
  4. Buckanovich R. J., Yang Y. Y., Darnell R. B. The onconeural antigen Nova-1 is a neuron-specific RNA-binding protein, the activity of which is inhibited by paraneoplastic antibodies. J Neurosci. 1996 Feb 1;16(3):1114–1122. doi: 10.1523/JNEUROSCI.16-03-01114.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Burd C. G., Dreyfuss G. Conserved structures and diversity of functions of RNA-binding proteins. Science. 1994 Jul 29;265(5172):615–621. doi: 10.1126/science.8036511. [DOI] [PubMed] [Google Scholar]
  6. Chan R. C., Black D. L. The polypyrimidine tract binding protein binds upstream of neural cell-specific c-src exon N1 to repress the splicing of the intron downstream. Mol Cell Biol. 1997 Aug;17(8):4667–4676. doi: 10.1128/mcb.17.8.4667. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Cáceres J. F., Stamm S., Helfman D. M., Krainer A. R. Regulation of alternative splicing in vivo by overexpression of antagonistic splicing factors. Science. 1994 Sep 16;265(5179):1706–1709. doi: 10.1126/science.8085156. [DOI] [PubMed] [Google Scholar]
  8. Dignam J. D., Lebovitz R. M., Roeder R. G. Accurate transcription initiation by RNA polymerase II in a soluble extract from isolated mammalian nuclei. Nucleic Acids Res. 1983 Mar 11;11(5):1475–1489. doi: 10.1093/nar/11.5.1475. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Fu X. D. The superfamily of arginine/serine-rich splicing factors. RNA. 1995 Sep;1(7):663–680. [PMC free article] [PubMed] [Google Scholar]
  10. García-Blanco M. A., Jamison S. F., Sharp P. A. Identification and purification of a 62,000-dalton protein that binds specifically to the polypyrimidine tract of introns. Genes Dev. 1989 Dec;3(12A):1874–1886. doi: 10.1101/gad.3.12a.1874. [DOI] [PubMed] [Google Scholar]
  11. Ghetti A., Piñol-Roma S., Michael W. M., Morandi C., Dreyfuss G. hnRNP I, the polypyrimidine tract-binding protein: distinct nuclear localization and association with hnRNAs. Nucleic Acids Res. 1992 Jul 25;20(14):3671–3678. doi: 10.1093/nar/20.14.3671. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Gil A., Sharp P. A., Jamison S. F., Garcia-Blanco M. A. Characterization of cDNAs encoding the polypyrimidine tract-binding protein. Genes Dev. 1991 Jul;5(7):1224–1236. doi: 10.1101/gad.5.7.1224. [DOI] [PubMed] [Google Scholar]
  13. Gooding C., Roberts G. C., Smith C. W. Role of an inhibitory pyrimidine element and polypyrimidine tract binding protein in repression of a regulated alpha-tropomyosin exon. RNA. 1998 Jan;4(1):85–100. [PMC free article] [PubMed] [Google Scholar]
  14. Grabowski P. J. Splicing regulation in neurons: tinkering with cell-specific control. Cell. 1998 Mar 20;92(6):709–712. doi: 10.1016/s0092-8674(00)81399-9. [DOI] [PubMed] [Google Scholar]
  15. Görlach M., Wittekind M., Beckman R. A., Mueller L., Dreyfuss G. Interaction of the RNA-binding domain of the hnRNP C proteins with RNA. EMBO J. 1992 Sep;11(9):3289–3295. doi: 10.1002/j.1460-2075.1992.tb05407.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Hahm B., Cho O. H., Kim J. E., Kim Y. K., Kim J. H., Oh Y. L., Jang S. K. Polypyrimidine tract-binding protein interacts with HnRNP L. FEBS Lett. 1998 Apr 3;425(3):401–406. doi: 10.1016/s0014-5793(98)00269-5. [DOI] [PubMed] [Google Scholar]
  17. King P. H., Levine T. D., Fremeau R. T., Jr, Keene J. D. Mammalian homologs of Drosophila ELAV localized to a neuronal subset can bind in vitro to the 3' UTR of mRNA encoding the Id transcriptional repressor. J Neurosci. 1994 Apr;14(4):1943–1952. doi: 10.1523/JNEUROSCI.14-04-01943.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Lou H., Gagel R. F., Berget S. M. An intron enhancer recognized by splicing factors activates polyadenylation. Genes Dev. 1996 Jan 15;10(2):208–219. doi: 10.1101/gad.10.2.208. [DOI] [PubMed] [Google Scholar]
  19. Manley J. L., Tacke R. SR proteins and splicing control. Genes Dev. 1996 Jul 1;10(13):1569–1579. doi: 10.1101/gad.10.13.1569. [DOI] [PubMed] [Google Scholar]
  20. Min H., Chan R. C., Black D. L. The generally expressed hnRNP F is involved in a neural-specific pre-mRNA splicing event. Genes Dev. 1995 Nov 1;9(21):2659–2671. doi: 10.1101/gad.9.21.2659. [DOI] [PubMed] [Google Scholar]
  21. Min H., Turck C. W., Nikolic J. M., Black D. L. A new regulatory protein, KSRP, mediates exon inclusion through an intronic splicing enhancer. Genes Dev. 1997 Apr 15;11(8):1023–1036. doi: 10.1101/gad.11.8.1023. [DOI] [PubMed] [Google Scholar]
  22. Mullen M. P., Smith C. W., Patton J. G., Nadal-Ginard B. Alpha-tropomyosin mutually exclusive exon selection: competition between branchpoint/polypyrimidine tracts determines default exon choice. Genes Dev. 1991 Apr;5(4):642–655. doi: 10.1101/gad.5.4.642. [DOI] [PubMed] [Google Scholar]
  23. Mulligan G. J., Guo W., Wormsley S., Helfman D. M. Polypyrimidine tract binding protein interacts with sequences involved in alternative splicing of beta-tropomyosin pre-mRNA. J Biol Chem. 1992 Dec 15;267(35):25480–25487. [PubMed] [Google Scholar]
  24. Oh Y. L., Hahm B., Kim Y. K., Lee H. K., Lee J. W., Song O., Tsukiyama-Kohara K., Kohara M., Nomoto A., Jang S. K. Determination of functional domains in polypyrimidine-tract-binding protein. Biochem J. 1998 Apr 1;331(Pt 1):169–175. doi: 10.1042/bj3310169. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Patton J. G., Mayer S. A., Tempst P., Nadal-Ginard B. Characterization and molecular cloning of polypyrimidine tract-binding protein: a component of a complex necessary for pre-mRNA splicing. Genes Dev. 1991 Jul;5(7):1237–1251. doi: 10.1101/gad.5.7.1237. [DOI] [PubMed] [Google Scholar]
  26. Philips A. V., Timchenko L. T., Cooper T. A. Disruption of splicing regulated by a CUG-binding protein in myotonic dystrophy. Science. 1998 May 1;280(5364):737–741. doi: 10.1126/science.280.5364.737. [DOI] [PubMed] [Google Scholar]
  27. Pérez I., Lin C. H., McAfee J. G., Patton J. G. Mutation of PTB binding sites causes misregulation of alternative 3' splice site selection in vivo. RNA. 1997 Jul;3(7):764–778. [PMC free article] [PubMed] [Google Scholar]
  28. Singer R. H. Triplet-repeat transcripts: a role for DNA in disease. Science. 1998 May 1;280(5364):696–697. doi: 10.1126/science.280.5364.696. [DOI] [PubMed] [Google Scholar]
  29. Stamm S., Casper D., Dinsmore J., Kaufmann C. A., Brosius J., Helfman D. M. Clathrin light chain B: gene structure and neuron-specific splicing. Nucleic Acids Res. 1992 Oct 11;20(19):5097–5103. doi: 10.1093/nar/20.19.5097. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Timchenko L. T., Miller J. W., Timchenko N. A., DeVore D. R., Datar K. V., Lin L., Roberts R., Caskey C. T., Swanson M. S. Identification of a (CUG)n triplet repeat RNA-binding protein and its expression in myotonic dystrophy. Nucleic Acids Res. 1996 Nov 15;24(22):4407–4414. doi: 10.1093/nar/24.22.4407. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Valcárcel J., Gebauer F. Post-transcriptional regulation: the dawn of PTB. Curr Biol. 1997 Nov 1;7(11):R705–R708. doi: 10.1016/s0960-9822(06)00361-7. [DOI] [PubMed] [Google Scholar]
  32. Wang Z., Grabowski P. J. Cell- and stage-specific splicing events resolved in specialized neurons of the rat cerebellum. RNA. 1996 Dec;2(12):1241–1253. [PMC free article] [PubMed] [Google Scholar]
  33. Whiting P., McKernan R. M., Iversen L. L. Another mechanism for creating diversity in gamma-aminobutyrate type A receptors: RNA splicing directs expression of two forms of gamma 2 phosphorylation site. Proc Natl Acad Sci U S A. 1990 Dec;87(24):9966–9970. doi: 10.1073/pnas.87.24.9966. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Wong D. H., Ignatius M. J., Parosky G., Parham P., Trojanowski J. Q., Brodsky F. M. Neuron-specific expression of high-molecular-weight clathrin light chain. J Neurosci. 1990 Sep;10(9):3025–3031. doi: 10.1523/JNEUROSCI.10-09-03025.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Zhang L., Ashiya M., Sherman T. G., Grabowski P. J. Essential nucleotides direct neuron-specific splicing of gamma 2 pre-mRNA. RNA. 1996 Jul;2(7):682–698. [PMC free article] [PubMed] [Google Scholar]
  36. Zukin R. S., Bennett M. V. Alternatively spliced isoforms of the NMDARI receptor subunit. Trends Neurosci. 1995 Jul;18(7):306–313. doi: 10.1016/0166-2236(95)93920-s. [DOI] [PubMed] [Google Scholar]

Articles from RNA are provided here courtesy of The RNA Society

RESOURCES