Skip to main content
RNA logoLink to RNA
. 1999 Feb;5(2):167–179. doi: 10.1017/s1355838299981785

The C-terminal region of hPrp8 interacts with the conserved GU dinucleotide at the 5' splice site.

J L Reyes 1, E H Gustafson 1, H R Luo 1, M J Moore 1, M M Konarska 1
PMCID: PMC1369749  PMID: 10024169

Abstract

A U5 snRNP protein, hPrp8, forms a UV-induced crosslink with the 5' splice site (5'SS) RNA within splicing complex B assembled in trans- as well as in cis-splicing reactions. Both yeast and human Prp8 interact with the 5'SS, branch site, polypyrimidine tract, and 3'SS during splicing. To begin to define functional domains in Prp8 we have mapped the site of the 5'SS crosslink within the hPrp8 protein. Immunoprecipitation analysis limited the site of crosslink to the C-terminal 5060-kDa segment of hPrp8. In addition, size comparison of the crosslink-containing peptides generated with different proteolytic reagents with the pattern of fragments predicted from the hPrp8 sequence allowed for mapping of the crosslink to a stretch of five amino acids in the C-terminal portion of hPrp8 (positions 1894-1898). The site of the 5'SS:hPrp8 crosslink falls within a segment spanning the previously defined polypyrimidine tract recognition domain in yPrp8, suggesting that an overlapping region of Prp8 may be involved both in the 5'SS and polypyrimidine tract recognition events. In the context of other known interactions of Prp8, these results suggest that this protein may participate in formation of the catalytic center of the spliceosome.

Full Text

The Full Text of this article is available as a PDF (591.9 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Abovich N., Rosbash M. Cross-intron bridging interactions in the yeast commitment complex are conserved in mammals. Cell. 1997 May 2;89(3):403–412. doi: 10.1016/s0092-8674(00)80221-4. [DOI] [PubMed] [Google Scholar]
  2. Chiara M. D., Gozani O., Bennett M., Champion-Arnaud P., Palandjian L., Reed R. Identification of proteins that interact with exon sequences, splice sites, and the branchpoint sequence during each stage of spliceosome assembly. Mol Cell Biol. 1996 Jul;16(7):3317–3326. doi: 10.1128/mcb.16.7.3317. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Chiara M. D., Palandjian L., Feld Kramer R., Reed R. Evidence that U5 snRNP recognizes the 3' splice site for catalytic step II in mammals. EMBO J. 1997 Aug 1;16(15):4746–4759. doi: 10.1093/emboj/16.15.4746. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Crispino J. D., Sharp P. A. A U6 snRNA:pre-mRNA interaction can be rate-limiting for U1-independent splicing. Genes Dev. 1995 Sep 15;9(18):2314–2323. doi: 10.1101/gad.9.18.2314. [DOI] [PubMed] [Google Scholar]
  5. Hodges P. E., Jackson S. P., Brown J. D., Beggs J. D. Extraordinary sequence conservation of the PRP8 splicing factor. Yeast. 1995 Apr 15;11(4):337–342. doi: 10.1002/yea.320110406. [DOI] [PubMed] [Google Scholar]
  6. Jamieson D. J., Rahe B., Pringle J., Beggs J. D. A suppressor of a yeast splicing mutation (prp8-1) encodes a putative ATP-dependent RNA helicase. Nature. 1991 Feb 21;349(6311):715–717. doi: 10.1038/349715a0. [DOI] [PubMed] [Google Scholar]
  7. Kandels-Lewis S., Séraphin B. Involvement of U6 snRNA in 5' splice site selection. Science. 1993 Dec 24;262(5142):2035–2039. doi: 10.1126/science.8266100. [DOI] [PubMed] [Google Scholar]
  8. Kim C. H., Abelson J. Site-specific crosslinks of yeast U6 snRNA to the pre-mRNA near the 5' splice site. RNA. 1996 Oct;2(10):995–1010. [PMC free article] [PubMed] [Google Scholar]
  9. Konarska M. M. Analysis of splicing complexes and small nuclear ribonucleoprotein particles by native gel electrophoresis. Methods Enzymol. 1989;180:442–453. doi: 10.1016/0076-6879(89)80116-8. [DOI] [PubMed] [Google Scholar]
  10. Konforti B. B., Konarska M. M. A short 5' splice site RNA oligo can participate in both steps of splicing in mammalian extracts. RNA. 1995 Oct;1(8):815–827. [PMC free article] [PubMed] [Google Scholar]
  11. Konforti B. B., Koziolkiewicz M. J., Konarska M. M. Disruption of base pairing between the 5' splice site and the 5' end of U1 snRNA is required for spliceosome assembly. Cell. 1993 Dec 3;75(5):863–873. doi: 10.1016/0092-8674(93)90531-t. [DOI] [PubMed] [Google Scholar]
  12. Lamond A. I., Konarska M. M., Sharp P. A. A mutational analysis of spliceosome assembly: evidence for splice site collaboration during spliceosome formation. Genes Dev. 1987 Aug;1(6):532–543. doi: 10.1101/gad.1.6.532. [DOI] [PubMed] [Google Scholar]
  13. Lesser C. F., Guthrie C. Mutations in U6 snRNA that alter splice site specificity: implications for the active site. Science. 1993 Dec 24;262(5142):1982–1988. doi: 10.1126/science.8266093. [DOI] [PubMed] [Google Scholar]
  14. Luukkonen B. G., Séraphin B. A role for U2/U6 helix Ib in 5' splice site selection. RNA. 1998 Aug;4(8):915–927. doi: 10.1017/s1355838298980591. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Luukkonen B. G., Séraphin B. Genetic interaction between U6 snRNA and the first intron nucleotide in Saccharomyces cerevisiae. RNA. 1998 Feb;4(2):167–180. [PMC free article] [PubMed] [Google Scholar]
  16. Lücke S., Klöckner T., Palfi Z., Boshart M., Bindereif A. Trans mRNA splicing in trypanosomes: cloning and analysis of a PRP8-homologous gene from Trypanosoma brucei provides evidence for a U5-analogous RNP. EMBO J. 1997 Jul 16;16(14):4433–4440. doi: 10.1093/emboj/16.14.4433. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. MacMillan A. M., Query C. C., Allerson C. R., Chen S., Verdine G. L., Sharp P. A. Dynamic association of proteins with the pre-mRNA branch region. Genes Dev. 1994 Dec 15;8(24):3008–3020. doi: 10.1101/gad.8.24.3008. [DOI] [PubMed] [Google Scholar]
  18. Maly P., Rinke J., Ulmer E., Zwieb C., Brimacombe R. Precise localization of the site of cross-linking between protein L4 and 23S ribonucleic acid induced by mild ultraviolet irradiation of Escherichia coli 50S ribosomal subunits. Biochemistry. 1980 Sep 2;19(18):4179–4188. doi: 10.1021/bi00559a007. [DOI] [PubMed] [Google Scholar]
  19. Mirfakhrai M., Weiner A. M. Chemical Cleveland mapping: a rapid technique for characterization of crosslinked nucleic acid-protein complexes. Nucleic Acids Res. 1993 Jul 25;21(15):3591–3592. doi: 10.1093/nar/21.15.3591. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Moore M. J., Sharp P. A. Site-specific modification of pre-mRNA: the 2'-hydroxyl groups at the splice sites. Science. 1992 May 15;256(5059):992–997. doi: 10.1126/science.1589782. [DOI] [PubMed] [Google Scholar]
  21. Newman A. J. The role of U5 snRNP in pre-mRNA splicing. EMBO J. 1997 Oct 1;16(19):5797–5800. doi: 10.1093/emboj/16.19.5797. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. O'Keefe R. T., Norman C., Newman A. J. The invariant U5 snRNA loop 1 sequence is dispensable for the first catalytic step of pre-mRNA splicing in yeast. Cell. 1996 Aug 23;86(4):679–689. doi: 10.1016/s0092-8674(00)80140-3. [DOI] [PubMed] [Google Scholar]
  23. Paradiso P. R., Konigsberg W. Photochemical cross-linking of the gene 5 protein.fd DNA complex from fd-infected cells. J Biol Chem. 1982 Feb 10;257(3):1462–1467. [PubMed] [Google Scholar]
  24. Reyes J. L., Kois P., Konforti B. B., Konarska M. M. The canonical GU dinucleotide at the 5' splice site is recognized by p220 of the U5 snRNP within the spliceosome. RNA. 1996 Mar;2(3):213–225. [PMC free article] [PubMed] [Google Scholar]
  25. Schägger H., von Jagow G. Tricine-sodium dodecyl sulfate-polyacrylamide gel electrophoresis for the separation of proteins in the range from 1 to 100 kDa. Anal Biochem. 1987 Nov 1;166(2):368–379. doi: 10.1016/0003-2697(87)90587-2. [DOI] [PubMed] [Google Scholar]
  26. Sha M., Levy T., Kois P., Konarska M. M. Probing of the spliceosome with site-specifically derivatized 5' splice site RNA oligonucleotides. RNA. 1998 Sep;4(9):1069–1082. doi: 10.1017/s1355838298980682. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Shechter Y., Patchornik A., Burstein Y. Selective chemical cleavage of tryptophanyl peptide bonds by oxidative chlorination with N-chlorosuccinimide. Biochemistry. 1976 Nov 16;15(23):5071–5075. doi: 10.1021/bi00668a019. [DOI] [PubMed] [Google Scholar]
  28. Shetlar M. D., Christensen J., Hom K. Photochemical addition of amino acids and peptides to DNA. Photochem Photobiol. 1984 Feb;39(2):125–133. doi: 10.1111/j.1751-1097.1984.tb03417.x. [DOI] [PubMed] [Google Scholar]
  29. Sontheimer E. J., Steitz J. A. The U5 and U6 small nuclear RNAs as active site components of the spliceosome. Science. 1993 Dec 24;262(5142):1989–1996. doi: 10.1126/science.8266094. [DOI] [PubMed] [Google Scholar]
  30. Sontheimer E. J., Steitz J. A. The U5 and U6 small nuclear RNAs as active site components of the spliceosome. Science. 1993 Dec 24;262(5142):1989–1996. doi: 10.1126/science.8266094. [DOI] [PubMed] [Google Scholar]
  31. Strauss E. J., Guthrie C. A cold-sensitive mRNA splicing mutant is a member of the RNA helicase gene family. Genes Dev. 1991 Apr;5(4):629–641. doi: 10.1101/gad.5.4.629. [DOI] [PubMed] [Google Scholar]
  32. Teigelkamp S., Mundt C., Achsel T., Will C. L., Lührmann R. The human U5 snRNP-specific 100-kD protein is an RS domain-containing, putative RNA helicase with significant homology to the yeast splicing factor Prp28p. RNA. 1997 Nov;3(11):1313–1326. [PMC free article] [PubMed] [Google Scholar]
  33. Teigelkamp S., Newman A. J., Beggs J. D. Extensive interactions of PRP8 protein with the 5' and 3' splice sites during splicing suggest a role in stabilization of exon alignment by U5 snRNA. EMBO J. 1995 Jun 1;14(11):2602–2612. doi: 10.1002/j.1460-2075.1995.tb07258.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Teigelkamp S., Whittaker E., Beggs J. D. Interaction of the yeast splicing factor PRP8 with substrate RNA during both steps of splicing. Nucleic Acids Res. 1995 Feb 11;23(3):320–326. doi: 10.1093/nar/23.3.320. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Umen J. G., Guthrie C. A novel role for a U5 snRNP protein in 3' splice site selection. Genes Dev. 1995 Apr 1;9(7):855–868. doi: 10.1101/gad.9.7.855. [DOI] [PubMed] [Google Scholar]
  36. Umen J. G., Guthrie C. Mutagenesis of the yeast gene PRP8 reveals domains governing the specificity and fidelity of 3' splice site selection. Genetics. 1996 Jun;143(2):723–739. doi: 10.1093/genetics/143.2.723. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Wyatt J. R., Sontheimer E. J., Steitz J. A. Site-specific cross-linking of mammalian U5 snRNP to the 5' splice site before the first step of pre-mRNA splicing. Genes Dev. 1992 Dec;6(12B):2542–2553. doi: 10.1101/gad.6.12b.2542. [DOI] [PubMed] [Google Scholar]
  38. Zwieb C., Brimacombe R. RNA-protein cross-linking in Eschericia coli 30S ribosomal subunits: a method for the direct analysis of the RNA regions involved in the cross-links. Nucleic Acids Res. 1978 Apr;5(4):1189–1206. doi: 10.1093/nar/5.4.1189. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from RNA are provided here courtesy of The RNA Society

RESOURCES