Skip to main content
RNA logoLink to RNA
. 1999 Feb;5(2):180–187. doi: 10.1017/s1355838299981670

The influence of junction conformation on RNA cleavage by the hairpin ribozyme in its natural junction form.

J B Thomson 1, D M Lilley 1
PMCID: PMC1369750  PMID: 10024170

Abstract

In the natural form of the hairpin ribozyme the two loop-carrying duplexes that comprise the majority of essential bases for activity form two adjacent helical arms of a four-way RNA junction. In the present work we have manipulated the sequence around the junction in a way known to perturb the global folding properties. We find that replacement of the junction by a different sequence that has the same conformational properties as the natural sequence gives closely similar reaction rate and Arrhenius activation energy for the substrate cleavage reaction. By comparison, rotation of the natural sequence in order to alter the three-dimensional folding of the ribozyme leads to a tenfold reduction in the kinetics of cleavage. Replacement with the U1 four-way junction that is resistant to rotation into the antiparallel structure required to allow interaction between the loops also gives a tenfold reduction in cleavage rate. The results indicate that the conformation of the junction has a major influence on the catalytic activity of the ribozyme. The results are all consistent with a role for the junction in the provision of a framework by which the loops are presented for interaction in order to create the active form of the ribozyme.

Full Text

The Full Text of this article is available as a PDF (191.4 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Anderson P., Monforte J., Tritz R., Nesbitt S., Hearst J., Hampel A. Mutagenesis of the hairpin ribozyme. Nucleic Acids Res. 1994 Mar 25;22(6):1096–1100. doi: 10.1093/nar/22.6.1096. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Berzal-Herranz A., Joseph S., Chowrira B. M., Butcher S. E., Burke J. M. Essential nucleotide sequences and secondary structure elements of the hairpin ribozyme. EMBO J. 1993 Jun;12(6):2567–2573. doi: 10.1002/j.1460-2075.1993.tb05912.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Branlant C., Krol A., Ebel J. P., Gallinaro H., Lazar E., Jacob M. The conformation of chicken, rat and human U1A RNAs in solution. Nucleic Acids Res. 1981 Feb 25;9(4):841–858. doi: 10.1093/nar/9.4.841. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Butcher S. E., Heckman J. E., Burke J. M. Reconstitution of hairpin ribozyme activity following separation of functional domains. J Biol Chem. 1995 Dec 15;270(50):29648–29651. doi: 10.1074/jbc.270.50.29648. [DOI] [PubMed] [Google Scholar]
  5. Chowrira B. M., Berzal-Herranz A., Burke J. M. Novel guanosine requirement for catalysis by the hairpin ribozyme. Nature. 1991 Nov 28;354(6351):320–322. doi: 10.1038/354320a0. [DOI] [PubMed] [Google Scholar]
  6. Chowrira B. M., Berzal-Herranz A., Keller C. F., Burke J. M. Four ribose 2'-hydroxyl groups essential for catalytic function of the hairpin ribozyme. J Biol Chem. 1993 Sep 15;268(26):19458–19462. [PubMed] [Google Scholar]
  7. DeYoung M., Siwkowski A. M., Lian Y., Hampel A. Catalytic properties of hairpin ribozymes derived from Chicory yellow mottle virus and arabis mosaic virus satellite RNAs. Biochemistry. 1995 Dec 5;34(48):15785–15791. doi: 10.1021/bi00048a024. [DOI] [PubMed] [Google Scholar]
  8. Duckett D. R., Murchie A. I., Lilley D. M. The global folding of four-way helical junctions in RNA, including that in U1 snRNA. Cell. 1995 Dec 15;83(6):1027–1036. doi: 10.1016/0092-8674(95)90218-x. [DOI] [PubMed] [Google Scholar]
  9. Earnshaw D. J., Masquida B., Müller S., Sigurdsson S. T., Eckstein F., Westhof E., Gait M. J. Inter-domain cross-linking and molecular modelling of the hairpin ribozyme. J Mol Biol. 1997 Nov 28;274(2):197–212. doi: 10.1006/jmbi.1997.1405. [DOI] [PubMed] [Google Scholar]
  10. Feldstein P. A., Buzayan J. M., Bruening G. Two sequences participating in the autolytic processing of satellite tobacco ringspot virus complementary RNA. Gene. 1989 Oct 15;82(1):53–61. doi: 10.1016/0378-1119(89)90029-2. [DOI] [PubMed] [Google Scholar]
  11. Grasby J. A., Mersmann K., Singh M., Gait M. J. Purine functional groups in essential residues of the hairpin ribozyme required for catalytic cleavage of RNA. Biochemistry. 1995 Mar 28;34(12):4068–4076. doi: 10.1021/bi00012a025. [DOI] [PubMed] [Google Scholar]
  12. Hampel A., Cowan J. A. A unique mechanism for RNA catalysis: the role of metal cofactors in hairpin ribozyme cleavage. Chem Biol. 1997 Jul;4(7):513–517. doi: 10.1016/s1074-5521(97)90323-9. [DOI] [PubMed] [Google Scholar]
  13. Hampel A., Tritz R., Hicks M., Cruz P. 'Hairpin' catalytic RNA model: evidence for helices and sequence requirement for substrate RNA. Nucleic Acids Res. 1990 Jan 25;18(2):299–304. doi: 10.1093/nar/18.2.299. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Hampel A., Tritz R. RNA catalytic properties of the minimum (-)sTRSV sequence. Biochemistry. 1989 Jun 13;28(12):4929–4933. doi: 10.1021/bi00438a002. [DOI] [PubMed] [Google Scholar]
  15. Hegg L. A., Fedor M. J. Kinetics and thermodynamics of intermolecular catalysis by hairpin ribozymes. Biochemistry. 1995 Dec 5;34(48):15813–15828. doi: 10.1021/bi00048a027. [DOI] [PubMed] [Google Scholar]
  16. Komatsu Y., Kanzaki I., Ohtsuka E. Enhanced folding of hairpin ribozymes with replaced domains. Biochemistry. 1996 Jul 30;35(30):9815–9820. doi: 10.1021/bi960627n. [DOI] [PubMed] [Google Scholar]
  17. Komatsu Y., Kanzaki I., Shirai M., Ohtsuka E. A new type of hairpin ribozyme consisting of three domains. Biochemistry. 1997 Aug 12;36(32):9935–9940. doi: 10.1021/bi970336u. [DOI] [PubMed] [Google Scholar]
  18. Komatsu Y., Shirai M., Yamashita S., Ohtsuka E. Construction of hairpin ribozymes with a three-way junction. Bioorg Med Chem. 1997 Jun;5(6):1063–1069. doi: 10.1016/s0968-0896(97)00042-4. [DOI] [PubMed] [Google Scholar]
  19. Maxam A. M., Gilbert W. Sequencing end-labeled DNA with base-specific chemical cleavages. Methods Enzymol. 1980;65(1):499–560. doi: 10.1016/s0076-6879(80)65059-9. [DOI] [PubMed] [Google Scholar]
  20. Milligan J. F., Groebe D. R., Witherell G. W., Uhlenbeck O. C. Oligoribonucleotide synthesis using T7 RNA polymerase and synthetic DNA templates. Nucleic Acids Res. 1987 Nov 11;15(21):8783–8798. doi: 10.1093/nar/15.21.8783. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Murchie A. I., Thomson J. B., Walter F., Lilley D. M. Folding of the hairpin ribozyme in its natural conformation achieves close physical proximity of the loops. Mol Cell. 1998 May;1(6):873–881. doi: 10.1016/s1097-2765(00)80086-6. [DOI] [PubMed] [Google Scholar]
  22. Nesbitt S., Hegg L. A., Fedor M. J. An unusual pH-independent and metal-ion-independent mechanism for hairpin ribozyme catalysis. Chem Biol. 1997 Aug;4(8):619–630. doi: 10.1016/s1074-5521(97)90247-7. [DOI] [PubMed] [Google Scholar]
  23. Perreault J. P., Wu T. F., Cousineau B., Ogilvie K. K., Cedergren R. Mixed deoxyribo- and ribo-oligonucleotides with catalytic activity. Nature. 1990 Apr 5;344(6266):565–567. doi: 10.1038/344565a0. [DOI] [PubMed] [Google Scholar]
  24. Schmidt S., Beigelman L., Karpeisky A., Usman N., Sorensen U. S., Gait M. J. Base and sugar requirements for RNA cleavage of essential nucleoside residues in internal loop B of the hairpin ribozyme: implications for secondary structure. Nucleic Acids Res. 1996 Feb 15;24(4):573–581. doi: 10.1093/nar/24.4.573. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Shin C., Choi J. N., Song S. I., Song J. T., Ahn J. H., Lee J. S., Choi Y. D. The loop B domain is physically separable from the loop A domain in the hairpin ribozyme. Nucleic Acids Res. 1996 Jul 15;24(14):2685–2689. doi: 10.1093/nar/24.14.2685. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Siwkowski A., Shippy R., Hampel A. Analysis of hairpin ribozyme base mutations in loops 2 and 4 and their effects on cis-cleavage in vitro. Biochemistry. 1997 Apr 1;36(13):3930–3940. doi: 10.1021/bi9628735. [DOI] [PubMed] [Google Scholar]
  27. Thomson J. B., Sigurdsson S. T., Zeuch A., Eckstein F. In vitro selection of hammerhead ribozymes containing a bulged nucleotide in stem II. Nucleic Acids Res. 1996 Nov 15;24(22):4401–4406. doi: 10.1093/nar/24.22.4401. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Van Tol H., Buzayan J. M., Bruening G. Evidence for spontaneous circle formation in the replication of the satellite RNA of tobacco ringspot virus. Virology. 1991 Jan;180(1):23–30. doi: 10.1016/0042-6822(91)90005-v. [DOI] [PubMed] [Google Scholar]
  29. Walter F., Murchie A. I., Duckett D. R., Lilley D. M. Global structure of four-way RNA junctions studied using fluorescence resonance energy transfer. RNA. 1998 Jun;4(6):719–728. doi: 10.1017/s135583829898030x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Walter F., Murchie A. I., Thomson J. B., Lilley D. M. Structure and activity of the hairpin ribozyme in its natural junction conformation: effect of metal ions. Biochemistry. 1998 Oct 6;37(40):14195–14203. doi: 10.1021/bi981513+. [DOI] [PubMed] [Google Scholar]
  31. Walter N. G., Hampel K. J., Brown K. M., Burke J. M. Tertiary structure formation in the hairpin ribozyme monitored by fluorescence resonance energy transfer. EMBO J. 1998 Apr 15;17(8):2378–2391. doi: 10.1093/emboj/17.8.2378. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Young K. J., Gill F., Grasby J. A. Metal ions play a passive role in the hairpin ribozyme catalysed reaction. Nucleic Acids Res. 1997 Oct 1;25(19):3760–3766. doi: 10.1093/nar/25.19.3760. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from RNA are provided here courtesy of The RNA Society

RESOURCES