Skip to main content
RNA logoLink to RNA
. 1999 Feb;5(2):257–271. doi: 10.1017/s1355838299981360

An examination of coaxial stacking of helical stems in a pseudoknot motif: the gene 32 messenger RNA pseudoknot of bacteriophage T2.

J A Holland 1, M R Hansen 1, Z Du 1, D W Hoffman 1
PMCID: PMC1369757  PMID: 10024177

Abstract

The RNA pseudoknot located at the 5' end of the gene 32 messenger RNA of bacteriophage T2 contains two A-form helical stems connected by two loops, in an H-type pseudoknot topology. A combination of multidimensional NMR methods and isotope labeling were used to investigate the pseudoknot structure, resulting in a more detailed structural model than provided by earlier homonuclear NMR studies. Of particular significance, the interface between the stacked helical stems within the pseudoknot motif is described in detail. The two stems are stacked in a coaxial manner, with an approximately 18 degrees rotation of stem1 relative to stem2 about an axis that is parallel to the helical axis. This rotation serves to relieve what would otherwise be a relatively close phosphate-phosphate contact at the junction of the two stems, while preserving the stabilizing effects of base stacking. The ability of the NMR data to determine pseudoknot bending was critically assessed. The data were found to be a modestly precise indicator of pseudoknot bending, with the angle between the helical axes of stem1 and stem2 being in the range of 15+/-15 degrees. Pseudoknot models with bend angles within this range are equally consistent with the data, since they differ by only small amounts in the relatively short-range interproton distances from which the structure was derived. The gene 32 messenger RNA pseudoknot was compared with other RNA structures with coaxial or near-coaxial stacked helical stems.

Full Text

The Full Text of this article is available as a PDF (940.5 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Aboul-ela F., Karn J., Varani G. The structure of the human immunodeficiency virus type-1 TAR RNA reveals principles of RNA recognition by Tat protein. J Mol Biol. 1995 Oct 20;253(2):313–332. doi: 10.1006/jmbi.1995.0555. [DOI] [PubMed] [Google Scholar]
  2. Addess K. J., Basilion J. P., Klausner R. D., Rouault T. A., Pardi A. Structure and dynamics of the iron responsive element RNA: implications for binding of the RNA by iron regulatory binding proteins. J Mol Biol. 1997 Nov 21;274(1):72–83. doi: 10.1006/jmbi.1997.1377. [DOI] [PubMed] [Google Scholar]
  3. Allain F. H., Varani G. Structure of the P1 helix from group I self-splicing introns. J Mol Biol. 1995 Jul 14;250(3):333–353. doi: 10.1006/jmbi.1995.0381. [DOI] [PubMed] [Google Scholar]
  4. Arnott S., Hukins D. W., Dover S. D. Optimised parameters for RNA double-helices. Biochem Biophys Res Commun. 1972 Sep 26;48(6):1392–1399. doi: 10.1016/0006-291x(72)90867-4. [DOI] [PubMed] [Google Scholar]
  5. Batey R. T., Inada M., Kujawinski E., Puglisi J. D., Williamson J. R. Preparation of isotopically labeled ribonucleotides for multidimensional NMR spectroscopy of RNA. Nucleic Acids Res. 1992 Sep 11;20(17):4515–4523. doi: 10.1093/nar/20.17.4515. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Bénard L., Philippe C., Dondon L., Grunberg-Manago M., Ehresmann B., Ehresmann C., Portier C. Mutational analysis of the pseudoknot structure of the S15 translational operator from Escherichia coli. Mol Microbiol. 1994 Oct;14(1):31–40. doi: 10.1111/j.1365-2958.1994.tb01264.x. [DOI] [PubMed] [Google Scholar]
  7. Chen X., Chamorro M., Lee S. I., Shen L. X., Hines J. V., Tinoco I., Jr, Varmus H. E. Structural and functional studies of retroviral RNA pseudoknots involved in ribosomal frameshifting: nucleotides at the junction of the two stems are important for efficient ribosomal frameshifting. EMBO J. 1995 Feb 15;14(4):842–852. doi: 10.1002/j.1460-2075.1995.tb07062.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Chen X., Kang H., Shen L. X., Chamorro M., Varmus H. E., Tinoco I., Jr A characteristic bent conformation of RNA pseudoknots promotes -1 frameshifting during translation of retroviral RNA. J Mol Biol. 1996 Jul 26;260(4):479–483. doi: 10.1006/jmbi.1996.0415. [DOI] [PubMed] [Google Scholar]
  9. Dam E., Pleij K., Draper D. Structural and functional aspects of RNA pseudoknots. Biochemistry. 1992 Dec 1;31(47):11665–11676. doi: 10.1021/bi00162a001. [DOI] [PubMed] [Google Scholar]
  10. Deckman I. C., Draper D. E. S4-alpha mRNA translation regulation complex. II. Secondary structures of the RNA regulatory site in the presence and absence of S4. J Mol Biol. 1987 Jul 20;196(2):323–332. doi: 10.1016/0022-2836(87)90693-0. [DOI] [PubMed] [Google Scholar]
  11. Dieckmann T., Feigon J. Assignment methodology for larger RNA oligonucleotides: application to an ATP-binding RNA aptamer. J Biomol NMR. 1997 Apr;9(3):259–272. doi: 10.1023/a:1018622708674. [DOI] [PubMed] [Google Scholar]
  12. Du Z., Giedroc D. P., Hoffman D. W. Structure of the autoregulatory pseudoknot within the gene 32 messenger RNA of bacteriophages T2 and T6: a model for a possible family of structurally related RNA pseudoknots. Biochemistry. 1996 Apr 2;35(13):4187–4198. doi: 10.1021/bi9527350. [DOI] [PubMed] [Google Scholar]
  13. Du Z., Hoffman D. W. An NMR and mutational study of the pseudoknot within the gene 32 mRNA of bacteriophage T2: insights into a family of structurally related RNA pseudoknots. Nucleic Acids Res. 1997 Mar 15;25(6):1130–1135. doi: 10.1093/nar/25.6.1130. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Du Z., Holland J. A., Hansen M. R., Giedroc D. P., Hoffman D. W. Base-pairings within the RNA pseudoknot associated with the simian retrovirus-1 gag-pro frameshift site. J Mol Biol. 1997 Jul 18;270(3):464–470. doi: 10.1006/jmbi.1997.1127. [DOI] [PubMed] [Google Scholar]
  15. Gluick T. C., Wills N. M., Gesteland R. F., Draper D. E. Folding of an mRNA pseudoknot required for stop codon readthrough: effects of mono- and divalent ions on stability. Biochemistry. 1997 Dec 23;36(51):16173–16186. doi: 10.1021/bi971362v. [DOI] [PubMed] [Google Scholar]
  16. Hingerty B., Brown R. S., Jack A. Further refinement of the structure of yeast tRNAPhe. J Mol Biol. 1978 Sep 25;124(3):523–534. doi: 10.1016/0022-2836(78)90185-7. [DOI] [PubMed] [Google Scholar]
  17. Hoffman D. W., Holland J. A. Preparation of carbon-13 labeled ribonucleotides using acetate as an isotope source. Nucleic Acids Res. 1995 Aug 25;23(16):3361–3362. doi: 10.1093/nar/23.16.3361-b. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Hoffman D. W., White S. W. NMR analysis of the trans-activation response (TAR) RNA element of equine infectious anemia virus. Nucleic Acids Res. 1995 Oct 25;23(20):4058–4065. doi: 10.1093/nar/23.20.4058. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Jiang F., Kumar R. A., Jones R. A., Patel D. J. Structural basis of RNA folding and recognition in an AMP-RNA aptamer complex. Nature. 1996 Jul 11;382(6587):183–186. doi: 10.1038/382183a0. [DOI] [PubMed] [Google Scholar]
  20. Kolk M. H., van der Graaf M., Wijmenga S. S., Pleij C. W., Heus H. A., Hilbers C. W. NMR structure of a classical pseudoknot: interplay of single- and double-stranded RNA. Science. 1998 Apr 17;280(5362):434–438. doi: 10.1126/science.280.5362.434. [DOI] [PubMed] [Google Scholar]
  21. Marion D., Driscoll P. C., Kay L. E., Wingfield P. T., Bax A., Gronenborn A. M., Clore G. M. Overcoming the overlap problem in the assignment of 1H NMR spectra of larger proteins by use of three-dimensional heteronuclear 1H-15N Hartmann-Hahn-multiple quantum coherence and nuclear Overhauser-multiple quantum coherence spectroscopy: application to interleukin 1 beta. Biochemistry. 1989 Jul 25;28(15):6150–6156. doi: 10.1021/bi00441a004. [DOI] [PubMed] [Google Scholar]
  22. Markowski V., Sullivan G. R., Roberts J. D. Nitrogen-15 nuclear magnetic resonance spectroscopy of some nucleosides and nucleotides. J Am Chem Soc. 1977 Feb 2;99(3):714–718. doi: 10.1021/ja00445a009. [DOI] [PubMed] [Google Scholar]
  23. McPheeters D. S., Stormo G. D., Gold L. Autogenous regulatory site on the bacteriophage T4 gene 32 messenger RNA. J Mol Biol. 1988 Jun 5;201(3):517–535. doi: 10.1016/0022-2836(88)90634-1. [DOI] [PubMed] [Google Scholar]
  24. Michnicka M. J., Harper J. W., King G. C. Selective isotopic enrichment of synthetic RNA: application to the HIV-1 TAR element. Biochemistry. 1993 Jan 19;32(2):395–400. doi: 10.1021/bi00053a002. [DOI] [PubMed] [Google Scholar]
  25. Nikonowicz E. P., Sirr A., Legault P., Jucker F. M., Baer L. M., Pardi A. Preparation of 13C and 15N labelled RNAs for heteronuclear multi-dimensional NMR studies. Nucleic Acids Res. 1992 Sep 11;20(17):4507–4513. doi: 10.1093/nar/20.17.4507. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Pardi A. Multidimensional heteronuclear NMR experiments for structure determination of isotopically labeled RNA. Methods Enzymol. 1995;261:350–380. doi: 10.1016/s0076-6879(95)61017-0. [DOI] [PubMed] [Google Scholar]
  27. Philippe C., Bénard L., Portier C., Westhof E., Ehresmann B., Ehresmann C. Molecular dissection of the pseudoknot governing the translational regulation of Escherichia coli ribosomal protein S15. Nucleic Acids Res. 1995 Jan 11;23(1):18–28. doi: 10.1093/nar/23.1.18. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Pleij C. W., Rietveld K., Bosch L. A new principle of RNA folding based on pseudoknotting. Nucleic Acids Res. 1985 Mar 11;13(5):1717–1731. doi: 10.1093/nar/13.5.1717. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Pley H. W., Flaherty K. M., McKay D. B. Three-dimensional structure of a hammerhead ribozyme. Nature. 1994 Nov 3;372(6501):68–74. doi: 10.1038/372068a0. [DOI] [PubMed] [Google Scholar]
  30. Portier C., Philippe C., Dondon L., Grunberg-Manago M., Ebel J. P., Ehresmann B., Ehresmann C. Translational control of ribosomal protein S15. Biochim Biophys Acta. 1990 Aug 27;1050(1-3):328–336. doi: 10.1016/0167-4781(90)90190-d. [DOI] [PubMed] [Google Scholar]
  31. Puglisi J. D., Wyatt J. R., Tinoco I., Jr Conformation of an RNA pseudoknot. J Mol Biol. 1990 Jul 20;214(2):437–453. doi: 10.1016/0022-2836(90)90192-O. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Qiu H., Kaluarachchi K., Du Z., Hoffman D. W., Giedroc D. P. Thermodynamics of folding of the RNA pseudoknot of the T4 gene 32 autoregulatory messenger RNA. Biochemistry. 1996 Apr 2;35(13):4176–4186. doi: 10.1021/bi9527348. [DOI] [PubMed] [Google Scholar]
  33. Rietveld K., Pleij C. W., Bosch L. Three-dimensional models of the tRNA-like 3' termini of some plant viral RNAs. EMBO J. 1983;2(7):1079–1085. doi: 10.1002/j.1460-2075.1983.tb01549.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Shen L. X., Tinoco I., Jr The structure of an RNA pseudoknot that causes efficient frameshifting in mouse mammary tumor virus. J Mol Biol. 1995 Apr 14;247(5):963–978. doi: 10.1006/jmbi.1995.0193. [DOI] [PubMed] [Google Scholar]
  35. Sklenár V., Peterson R. D., Rejante M. R., Feigon J. Correlation of nucleotide base and sugar protons in a 15N-labeled HIV-1 RNA oligonucleotide by 1H-15N HSQC experiments. J Biomol NMR. 1994 Jan;4(1):117–122. doi: 10.1007/BF00178339. [DOI] [PubMed] [Google Scholar]
  36. Sussman J. L., Holbrook S. R., Warrant R. W., Church G. M., Kim S. H. Crystal structure of yeast phenylalanine transfer RNA. I. Crystallographic refinement. J Mol Biol. 1978 Aug 25;123(4):607–630. doi: 10.1016/0022-2836(78)90209-7. [DOI] [PubMed] [Google Scholar]
  37. Tang C. K., Draper D. E. Unusual mRNA pseudoknot structure is recognized by a protein translational repressor. Cell. 1989 May 19;57(4):531–536. doi: 10.1016/0092-8674(89)90123-2. [DOI] [PubMed] [Google Scholar]
  38. Theimer C. A., Wang Y., Hoffman D. W., Krisch H. M., Giedroc D. P. Non-nearest neighbor effects on the thermodynamics of unfolding of a model mRNA pseudoknot. J Mol Biol. 1998 Jun 12;279(3):545–564. doi: 10.1006/jmbi.1998.1812. [DOI] [PubMed] [Google Scholar]
  39. Voet D., Rich A. The crystal structures of purines, pyrimidines and their intermolecular complexes. Prog Nucleic Acid Res Mol Biol. 1970;10:183–265. doi: 10.1016/s0079-6603(08)60565-6. [DOI] [PubMed] [Google Scholar]
  40. Westhof E., Dumas P., Moras D. Restrained refinement of two crystalline forms of yeast aspartic acid and phenylalanine transfer RNA crystals. Acta Crystallogr A. 1988 Mar 1;44(Pt 2):112–123. [PubMed] [Google Scholar]
  41. Wills N. M., Gesteland R. F., Atkins J. F. Evidence that a downstream pseudoknot is required for translational read-through of the Moloney murine leukemia virus gag stop codon. Proc Natl Acad Sci U S A. 1991 Aug 15;88(16):6991–6995. doi: 10.1073/pnas.88.16.6991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  42. Wills N. M., Gesteland R. F., Atkins J. F. Pseudoknot-dependent read-through of retroviral gag termination codons: importance of sequences in the spacer and loop 2. EMBO J. 1994 Sep 1;13(17):4137–4144. doi: 10.1002/j.1460-2075.1994.tb06731.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  43. Zuiderweg E. R., Fesik S. W. Heteronuclear three-dimensional NMR spectroscopy of the inflammatory protein C5a. Biochemistry. 1989 Mar 21;28(6):2387–2391. doi: 10.1021/bi00432a008. [DOI] [PubMed] [Google Scholar]
  44. ten Dam E. B., Pleij C. W., Bosch L. RNA pseudoknots: translational frameshifting and readthrough on viral RNAs. Virus Genes. 1990 Jul;4(2):121–136. doi: 10.1007/BF00678404. [DOI] [PMC free article] [PubMed] [Google Scholar]
  45. ten Dam E. B., Verlaan P. W., Pleij C. W. Analysis of the role of the pseudoknot component in the SRV-1 gag-pro ribosomal frameshift signal: loop lengths and stability of the stem regions. RNA. 1995 Apr;1(2):146–154. [PMC free article] [PubMed] [Google Scholar]
  46. ten Dam E., Brierley I., Inglis S., Pleij C. Identification and analysis of the pseudoknot-containing gag-pro ribosomal frameshift signal of simian retrovirus-1. Nucleic Acids Res. 1994 Jun 25;22(12):2304–2310. doi: 10.1093/nar/22.12.2304. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from RNA are provided here courtesy of The RNA Society

RESOURCES