Abstract
"U-turns" represent an important class of structural motifs in the RNA world, wherein a uridine is involved in an abrupt change in the direction of the polynucleotide backbone. In the crystal structure of yeast tRNAPhe, the invariant uridine at position 33 (U33), adjacent to the anticodon, stabilizes the exemplar U-turn with three non-Watson-Crick interactions: hydrogen bonding of the 2'-OH to N7 of A35 and the N3-H to A36-phosphate, and stacking between C32 and A35-phosphate. The functional importance of each noncanonical interaction was determined by assaying the ribosomal binding affinities of tRNAPhe anticodon stem and loop domains (ASLs) with substitutions at U33. An unsubstituted ASL bound 30S ribosomal subunits with an affinity (Kd = 140+/-50 nM) comparable to that of native yeast tRNAPhe (Kd = 100+/-20 nM). However, the binding affinities of ASLs with dU-33 (no 2'-OH) and C-33 (no N3-H) were significantly reduced (2,930+/-140 nM and 2,190+/-300 nM, respectively). Surprisingly, the ASL with N3-methyluridine-33 (no N3-H) bound ribosomes with a high affinity (Kd = 220+/-20 nM). In contrast, ASLs constructed with position 33 uridine analogs in nonstacking, nonnative, and constrained conformations, dihydrouridine (C2'-endo), 6-methyluridine (syn) and 2'O-methyluridine (C3'-endo) had almost undetectable binding. The inability of ASLs with 6-methyluridine-33 and 2'O-methyluridine-33 to bind ribosomes was not attributable to any thermal instability of the RNAs. These results demonstrate that proton donations by the N3-H and 2'OH groups of U33 are not absolutely required for ribosomal binding. Rather, the results suggest that the overall uridine conformation, including a dynamic (C3'-endo > C2'-endo) sugar pucker, anti conformation, and ability of uracil to stack between C32 and A35-phosphate, are the contributing factors to a functional U-turn.
Full Text
The Full Text of this article is available as a PDF (613.2 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Agris P. F., Malkiewicz A., Kraszewski A., Everett K., Nawrot B., Sochacka E., Jankowska J., Guenther R. Site-selected introduction of modified purine and pyrimidine ribonucleosides into RNA by automated phosphoramidite chemistry. Biochimie. 1995;77(1-2):125–134. doi: 10.1016/0300-9084(96)88115-6. [DOI] [PubMed] [Google Scholar]
- Ashraf S. S., Sochacka E., Cain R., Guenther R., Malkiewicz A., Agris P. F. Single atom modification (O-->S) of tRNA confers ribosome binding. RNA. 1999 Feb;5(2):188–194. doi: 10.1017/s1355838299981529. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bare L., Bruce A. G., Gesteland R., Uhlenbeck O. C. Uridine-33 in yeast tRNA not essential for amber suppression. Nature. 1983 Oct 6;305(5934):554–556. doi: 10.1038/305554a0. [DOI] [PubMed] [Google Scholar]
- Basti M. M., Stuart J. W., Lam A. T., Guenther R., Agris P. F. Design, biological activity and NMR-solution structure of a DNA analogue of yeast tRNA(Phe) anticodon domain. Nat Struct Biol. 1996 Jan;3(1):38–44. doi: 10.1038/nsb0196-38. [DOI] [PubMed] [Google Scholar]
- Chen Y., Sierzputowska-Gracz H., Guenther R., Everett K., Agris P. F. 5-Methylcytidine is required for cooperative binding of Mg2+ and a conformational transition at the anticodon stem-loop of yeast phenylalanine tRNA. Biochemistry. 1993 Sep 28;32(38):10249–10253. doi: 10.1021/bi00089a047. [DOI] [PubMed] [Google Scholar]
- Dalluge J. J., Hamamoto T., Horikoshi K., Morita R. Y., Stetter K. O., McCloskey J. A. Posttranscriptional modification of tRNA in psychrophilic bacteria. J Bacteriol. 1997 Mar;179(6):1918–1923. doi: 10.1128/jb.179.6.1918-1923.1997. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Dalluge J. J., Hashizume T., Sopchik A. E., McCloskey J. A., Davis D. R. Conformational flexibility in RNA: the role of dihydrouridine. Nucleic Acids Res. 1996 Mar 15;24(6):1073–1079. doi: 10.1093/nar/24.6.1073. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Dao V., Guenther R., Malkiewicz A., Nawrot B., Sochacka E., Kraszewski A., Jankowska J., Everett K., Agris P. F. Ribosome binding of DNA analogs of tRNA requires base modifications and supports the "extended anticodon". Proc Natl Acad Sci U S A. 1994 Mar 15;91(6):2125–2129. doi: 10.1073/pnas.91.6.2125. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Davanloo P., Sprinzl M., Cramer F. Proton nuclear magnetic resonance of minor nucleosides in yeast phenylalanine transfer ribonucleic acid. Conformational changes as a consequence of aminoacylation, removal of the Y base, and codon--anticodon interaction. Biochemistry. 1979 Jul 24;18(15):3189–3199. doi: 10.1021/bi00582a001. [DOI] [PubMed] [Google Scholar]
- Davis D. R., Poulter C. D. 1H-15N NMR studies of Escherichia coli tRNA(Phe) from hisT mutants: a structural role for pseudouridine. Biochemistry. 1991 Apr 30;30(17):4223–4231. doi: 10.1021/bi00231a017. [DOI] [PubMed] [Google Scholar]
- Dix D. B., Wittenberg W. L., Uhlenbeck O. C., Thompson R. C. Effect of replacing uridine 33 in yeast tRNAPhe on the reaction with ribosomes. J Biol Chem. 1986 Aug 5;261(22):10112–10118. [PubMed] [Google Scholar]
- Doudna J. A. Hammerhead ribozyme structure: U-turn for RNA structural biology. Structure. 1995 Aug 15;3(8):747–750. doi: 10.1016/s0969-2126(01)00208-8. [DOI] [PubMed] [Google Scholar]
- Ericson G., Minchew P., Wollenzien P. Structural changes in base-paired region 28 in 16 S rRNA close to the decoding region of the 30 S ribosomal subunit are correlated to changes in tRNA binding. J Mol Biol. 1995 Jul 21;250(4):407–419. doi: 10.1006/jmbi.1995.0386. [DOI] [PubMed] [Google Scholar]
- Felczak K., Drabikowska A. K., Vilpo J. A., Kulikowski T., Shugar D. 6-Substituted and 5,6-disubstituted derivatives of uridine: stereoselective synthesis, interaction with uridine phosphorylase, and in vitro antitumor activity. J Med Chem. 1996 Apr 12;39(8):1720–1728. doi: 10.1021/jm950675q. [DOI] [PubMed] [Google Scholar]
- Gehrke C. W., Kuo K. C., McCune R. A., Gerhardt K. O., Agris P. F. Quantitative enzymatic hydrolysis of tRNAs: reversed-phase high-performance liquid chromatography of tRNA nucleosides. J Chromatogr. 1982 Jul 9;230(2):297–308. [PubMed] [Google Scholar]
- Gorenstein D. G., Goldfield E. M. High-resolution phosphorus nuclear magnetic resonance spectroscopy of transfer ribonucleic acids: multiple conformations in the anticodon loop. Biochemistry. 1982 Nov 9;21(23):5839–5849. doi: 10.1021/bi00266a018. [DOI] [PubMed] [Google Scholar]
- Huang S., Wang Y. X., Draper D. E. Structure of a hexanucleotide RNA hairpin loop conserved in ribosomal RNAs. J Mol Biol. 1996 May 3;258(2):308–321. doi: 10.1006/jmbi.1996.0252. [DOI] [PubMed] [Google Scholar]
- Jucker F. M., Pardi A. GNRA tetraloops make a U-turn. RNA. 1995 Apr;1(2):219–222. [PMC free article] [PubMed] [Google Scholar]
- Kawai G., Ue H., Yasuda M., Sakamoto K., Hashizume T., McCloskey J. A., Miyazawa T., Yokoyama S. Relation between functions and conformational characteristics of modified nucleosides found in tRNAs. Nucleic Acids Symp Ser. 1991;(25):49–50. [PubMed] [Google Scholar]
- Kawai G., Yamamoto Y., Kamimura T., Masegi T., Sekine M., Hata T., Iimori T., Watanabe T., Miyazawa T., Yokoyama S. Conformational rigidity of specific pyrimidine residues in tRNA arises from posttranscriptional modifications that enhance steric interaction between the base and the 2'-hydroxyl group. Biochemistry. 1992 Feb 4;31(4):1040–1046. doi: 10.1021/bi00119a012. [DOI] [PubMed] [Google Scholar]
- Kim S. H., Quigley G. J., Suddath F. L., McPherson A., Sneden D., Kim J. J., Weinzierl J., Rich A. Three-dimensional structure of yeast phenylalanine transfer RNA: folding of the polynucleotide chain. Science. 1973 Jan 19;179(4070):285–288. doi: 10.1126/science.179.4070.285. [DOI] [PubMed] [Google Scholar]
- Kowalak J. A., Dalluge J. J., McCloskey J. A., Stetter K. O. The role of posttranscriptional modification in stabilization of transfer RNA from hyperthermophiles. Biochemistry. 1994 Jun 28;33(25):7869–7876. doi: 10.1021/bi00191a014. [DOI] [PubMed] [Google Scholar]
- Moazed D., Noller H. F. Binding of tRNA to the ribosomal A and P sites protects two distinct sets of nucleotides in 16 S rRNA. J Mol Biol. 1990 Jan 5;211(1):135–145. doi: 10.1016/0022-2836(90)90016-F. [DOI] [PubMed] [Google Scholar]
- Ogilvie K. K., Usman N., Nicoghosian K., Cedergren R. J. Total chemical synthesis of a 77-nucleotide-long RNA sequence having methionine-acceptance activity. Proc Natl Acad Sci U S A. 1988 Aug;85(16):5764–5768. doi: 10.1073/pnas.85.16.5764. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Pley H. W., Flaherty K. M., McKay D. B. Three-dimensional structure of a hammerhead ribozyme. Nature. 1994 Nov 3;372(6501):68–74. doi: 10.1038/372068a0. [DOI] [PubMed] [Google Scholar]
- Quigley G. J., Rich A. Structural domains of transfer RNA molecules. Science. 1976 Nov 19;194(4267):796–806. doi: 10.1126/science.790568. [DOI] [PubMed] [Google Scholar]
- Schmidt P. G., Sierzputowska-Gracz H., Agris P. F. Internal motions in yeast phenylalanine transfer RNA from 13C NMR relaxation rates of modified base methyl groups: a model-free approach. Biochemistry. 1987 Dec 29;26(26):8529–8534. doi: 10.1021/bi00400a006. [DOI] [PubMed] [Google Scholar]
- Schnitzer W., von Ahsen U. Identification of specific Rp-phosphate oxygens in the tRNA anticodon loop required for ribosomal P-site binding. Proc Natl Acad Sci U S A. 1997 Nov 25;94(24):12823–12828. doi: 10.1073/pnas.94.24.12823. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sowers L. C., Shaw B. R., Sedwick W. D. Base stacking and molecular polarizability: effect of a methyl group in the 5-position of pyrimidines. Biochem Biophys Res Commun. 1987 Oct 29;148(2):790–794. doi: 10.1016/0006-291x(87)90945-4. [DOI] [PubMed] [Google Scholar]
- Sprinzl M., Horn C., Brown M., Ioudovitch A., Steinberg S. Compilation of tRNA sequences and sequences of tRNA genes. Nucleic Acids Res. 1998 Jan 1;26(1):148–153. doi: 10.1093/nar/26.1.148. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Stallings S. C., Moore P. B. The structure of an essential splicing element: stem loop IIa from yeast U2 snRNA. Structure. 1997 Sep 15;5(9):1173–1185. doi: 10.1016/s0969-2126(97)00268-2. [DOI] [PubMed] [Google Scholar]
- Sundaralingam M., Rao S. T., Abola J. Stereochemistry of nucleic acids and their constituents. 23. Crystal and molecular structure of dihydrouridine "hemihydrate," a rare nucleoside with a saturated base occurring in the dihydrouridine loop of transfer ribonucleic acids. J Am Chem Soc. 1971 Dec 15;93(25):7055–7062. doi: 10.1021/ja00754a062. [DOI] [PubMed] [Google Scholar]
- Uhlenbeck O. C., Lowary P. T., Wittenberg W. L. Role of the constant uridine in binding of yeast tRNAPhe anticodon arm to 30S ribosomes. Nucleic Acids Res. 1982 Jun 11;10(11):3341–3352. doi: 10.1093/nar/10.11.3341. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wang S., Kool E. T. Origins of the large differences in stability of DNA and RNA helices: C-5 methyl and 2'-hydroxyl effects. Biochemistry. 1995 Mar 28;34(12):4125–4132. doi: 10.1021/bi00012a031. [DOI] [PubMed] [Google Scholar]
- Wittenberg W. L., Uhlenbeck O. C. Specific replacement of functional groups of uridine-33 in yeast phenylalanine transfer ribonucleic acid. Biochemistry. 1985 May 21;24(11):2705–2712. doi: 10.1021/bi00332a017. [DOI] [PubMed] [Google Scholar]
- von Ahsen U., Green R., Schroeder R., Noller H. F. Identification of 2'-hydroxyl groups required for interaction of a tRNA anticodon stem-loop region with the ribosome. RNA. 1997 Jan;3(1):49–56. [PMC free article] [PubMed] [Google Scholar]