Skip to main content
RNA logoLink to RNA
. 1999 Apr;5(4):550–561. doi: 10.1017/s1355838299982080

Subgenomic mRNA regulation by a distal RNA element in a (+)-strand RNA virus.

G Zhang 1, V Slowinski 1, K A White 1
PMCID: PMC1369781  PMID: 10199571

Abstract

Subgenomic (sg) mRNAs are synthesized by (+)-strand RNA viruses to allow for efficient translation of products encoded 3' in their genomes. This strategy also provides a means for regulating the expression of such products via modulation of sg mRNA accumulation. We have studied the mechanism by which sg mRNAs levels are controlled in tomato bushy stunt virus, a small (+)-strand RNA virus which synthesizes two sg mRNAs during infections. Neither the viral capsid nor movement proteins were found to play any significant role in modulating the accumulation levels of either sg mRNA. Deletion analysis did, however, identify a 12-nt-long RNA sequence located approximately 1,000 nt upstream from the site of initiation of sg mRNA2 synthesis that was required specifically for accumulation of sg mRNA2. Further analysis revealed a potential base-pairing interaction between this sequence and a sequence located just 5' to the site of initiation for sg mRNA2 synthesis. Mutant genomes in which this interaction was either disrupted or maintained were analyzed and the results indicated a positive correlation between the predicted stability of the base-pairing interaction and the efficiency of sg mRNA2 accumulation. The functional significance of the long-distance interaction was further supported by phylogenetic sequence analysis which revealed conservation of base-pairing interactions of similar stability and relative position in the genomes of different tombusviruses. It is proposed that the upstream sequence represents a cis-acting RNA element which facilitates sg mRNA accumulation by promoting efficient synthesis of sg mRNA2 via a long-distance RNA-RNA interaction.

Full Text

The Full Text of this article is available as a PDF (1.0 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Adkins S., Stawicki S. S., Faurote G., Siegel R. W., Kao C. C. Mechanistic analysis of RNA synthesis by RNA-dependent RNA polymerase from two promoters reveals similarities to DNA-dependent RNA polymerase. RNA. 1998 Apr;4(4):455–470. [PMC free article] [PubMed] [Google Scholar]
  2. An S., Makino S. Characterizations of coronavirus cis-acting RNA elements and the transcription step affecting its transcription efficiency. Virology. 1998 Mar 30;243(1):198–207. doi: 10.1006/viro.1998.9059. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Chapman S., Hills G., Watts J., Baulcombe D. Mutational analysis of the coat protein gene of potato virus X: effects on virion morphology and viral pathogenicity. Virology. 1992 Nov;191(1):223–230. doi: 10.1016/0042-6822(92)90183-p. [DOI] [PubMed] [Google Scholar]
  4. Grieco F., Burgyan J., Russo M. The nucleotide sequence of cymbidium ringspot virus RNA. Nucleic Acids Res. 1989 Aug 11;17(15):6383–6383. doi: 10.1093/nar/17.15.6383. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Havelda Z., Dalmay T., Burgyán J. Secondary structure-dependent evolution of Cymbidium ringspot virus defective interfering RNA. J Gen Virol. 1997 Jun;78(Pt 6):1227–1234. doi: 10.1099/0022-1317-78-6-1227. [DOI] [PubMed] [Google Scholar]
  6. Havelda Z., Szittya G., Burgyán J. Characterization of the molecular mechanism of defective interfering RNA-mediated symptom attenuation in tombusvirus-infected plants. J Virol. 1998 Jul;72(7):6251–6256. doi: 10.1128/jvi.72.7.6251-6256.1998. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Hearne P. Q., Knorr D. A., Hillman B. I., Morris T. J. The complete genome structure and synthesis of infectious RNA from clones of tomato bushy stunt virus. Virology. 1990 Jul;177(1):141–151. doi: 10.1016/0042-6822(90)90468-7. [DOI] [PubMed] [Google Scholar]
  8. Jeong Y. S., Repass J. F., Kim Y. N., Hwang S. M., Makino S. Coronavirus transcription mediated by sequences flanking the transcription consensus sequence. Virology. 1996 Mar 1;217(1):311–322. doi: 10.1006/viro.1996.0118. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Johnston J. C., Rochon D. M. Deletion analysis of the promoter for the cucumber necrosis virus 0.9-kb subgenomic RNA. Virology. 1995 Dec 1;214(1):100–109. doi: 10.1006/viro.1995.9950. [DOI] [PubMed] [Google Scholar]
  10. Joo M., Makino S. Mutagenic analysis of the coronavirus intergenic consensus sequence. J Virol. 1992 Nov;66(11):6330–6337. doi: 10.1128/jvi.66.11.6330-6337.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Kim K. H., Hemenway C. Mutations that alter a conserved element upstream of the potato virus X triple block and coat protein genes affect subgenomic RNA accumulation. Virology. 1997 May 26;232(1):187–197. doi: 10.1006/viro.1997.8565. [DOI] [PubMed] [Google Scholar]
  12. Kim K. H., Hemenway C. The 5' nontranslated region of potato virus X RNA affects both genomic and subgenomic RNA synthesis. J Virol. 1996 Aug;70(8):5533–5540. doi: 10.1128/jvi.70.8.5533-5540.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Klovins J., Berzins V., van Duin J. A long-range interaction in Qbeta RNA that bridges the thousand nucleotides between the M-site and the 3' end is required for replication. RNA. 1998 Aug;4(8):948–957. doi: 10.1017/s1355838298980177. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Koonin E. V. Genome replication/expression strategies of positive-strand RNA viruses: a simple version of a combinatorial classification and prediction of new strategies. Virus Genes. 1991 Jul;5(3):273–281. doi: 10.1007/BF00568977. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Koonin E. V. The phylogeny of RNA-dependent RNA polymerases of positive-strand RNA viruses. J Gen Virol. 1991 Sep;72(Pt 9):2197–2206. doi: 10.1099/0022-1317-72-9-2197. [DOI] [PubMed] [Google Scholar]
  16. Kozak M. How do eucaryotic ribosomes select initiation regions in messenger RNA? Cell. 1978 Dec;15(4):1109–1123. doi: 10.1016/0092-8674(78)90039-9. [DOI] [PubMed] [Google Scholar]
  17. Lai M. M. Cellular factors in the transcription and replication of viral RNA genomes: a parallel to DNA-dependent RNA transcription. Virology. 1998 Apr 25;244(1):1–12. doi: 10.1006/viro.1998.9098. [DOI] [PubMed] [Google Scholar]
  18. Lai M. M., Liao C. L., Lin Y. J., Zhang X. Coronavirus: how a large RNA viral genome is replicated and transcribed. Infect Agents Dis. 1994 Apr-Jun;3(2-3):98–105. [PubMed] [Google Scholar]
  19. Li H. P., Zhang X., Duncan R., Comai L., Lai M. M. Heterogeneous nuclear ribonucleoprotein A1 binds to the transcription-regulatory region of mouse hepatitis virus RNA. Proc Natl Acad Sci U S A. 1997 Sep 2;94(18):9544–9549. doi: 10.1073/pnas.94.18.9544. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Limmer S. Mismatch base pairs in RNA. Prog Nucleic Acid Res Mol Biol. 1997;57:1–39. doi: 10.1016/s0079-6603(08)60276-7. [DOI] [PubMed] [Google Scholar]
  21. Lin Y. J., Zhang X., Wu R. C., Lai M. M. The 3' untranslated region of coronavirus RNA is required for subgenomic mRNA transcription from a defective interfering RNA. J Virol. 1996 Oct;70(10):7236–7240. doi: 10.1128/jvi.70.10.7236-7240.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Maia I. G., Séron K., Haenni A. L., Bernardi F. Gene expression from viral RNA genomes. Plant Mol Biol. 1996 Oct;32(1-2):367–391. doi: 10.1007/BF00039391. [DOI] [PubMed] [Google Scholar]
  23. Makino S., Stohlman S. A., Lai M. M. Leader sequences of murine coronavirus mRNAs can be freely reassorted: evidence for the role of free leader RNA in transcription. Proc Natl Acad Sci U S A. 1986 Jun;83(12):4204–4208. doi: 10.1073/pnas.83.12.4204. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Miller W. A., Dreher T. W., Hall T. C. Synthesis of brome mosaic virus subgenomic RNA in vitro by internal initiation on (-)-sense genomic RNA. Nature. 1985 Jan 3;313(5997):68–70. doi: 10.1038/313068a0. [DOI] [PubMed] [Google Scholar]
  25. Oster S. K., Wu B., White K. A. Uncoupled expression of p33 and p92 permits amplification of tomato bushy stunt virus RNAs. J Virol. 1998 Jul;72(7):5845–5851. doi: 10.1128/jvi.72.7.5845-5851.1998. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Rochon D. M., Tremaine J. H. Complete nucleotide sequence of the cucumber necrosis virus genome. Virology. 1989 Apr;169(2):251–259. doi: 10.1016/0042-6822(89)90150-5. [DOI] [PubMed] [Google Scholar]
  27. Rubino L., Burgyan J., Russo M. Molecular cloning and complete nucleotide sequence of carnation Italian ringspot tombusvirus genomic and defective interfering RNAs. Arch Virol. 1995;140(11):2027–2039. doi: 10.1007/BF01322690. [DOI] [PubMed] [Google Scholar]
  28. Sawicki S. G., Sawicki D. L. A new model for coronavirus transcription. Adv Exp Med Biol. 1998;440:215–219. doi: 10.1007/978-1-4615-5331-1_26. [DOI] [PubMed] [Google Scholar]
  29. Scholthof H. B., Scholthof K. B., Kikkert M., Jackson A. O. Tomato bushy stunt virus spread is regulated by two nested genes that function in cell-to-cell movement and host-dependent systemic invasion. Virology. 1995 Nov 10;213(2):425–438. doi: 10.1006/viro.1995.0015. [DOI] [PubMed] [Google Scholar]
  30. Sethna P. B., Brian D. A. Coronavirus genomic and subgenomic minus-strand RNAs copartition in membrane-protected replication complexes. J Virol. 1997 Oct;71(10):7744–7749. doi: 10.1128/jvi.71.10.7744-7749.1997. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Siegel R. W., Adkins S., Kao C. C. Sequence-specific recognition of a subgenomic RNA promoter by a viral RNA polymerase. Proc Natl Acad Sci U S A. 1997 Oct 14;94(21):11238–11243. doi: 10.1073/pnas.94.21.11238. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Sit T. L., Vaewhongs A. A., Lommel S. A. RNA-mediated trans-activation of transcription from a viral RNA. Science. 1998 Aug 7;281(5378):829–832. doi: 10.1126/science.281.5378.829. [DOI] [PubMed] [Google Scholar]
  33. Spaan W., Delius H., Skinner M., Armstrong J., Rottier P., Smeekens S., van der Zeijst B. A., Siddell S. G. Coronavirus mRNA synthesis involves fusion of non-contiguous sequences. EMBO J. 1983;2(10):1839–1844. doi: 10.1002/j.1460-2075.1983.tb01667.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Tavazza M., Lucioli A., Calogero A., Pay A., Tavazza R. Nucleotide sequence, genomic organization and synthesis of infectious transcripts from a full-length clone of artichoke mottle crinkle virus. J Gen Virol. 1994 Jul;75(Pt 7):1515–1524. doi: 10.1099/0022-1317-75-7-1515. [DOI] [PubMed] [Google Scholar]
  35. Verchot J., Angell S. M., Baulcombe D. C. In vivo translation of the triple gene block of potato virus X requires two subgenomic mRNAs. J Virol. 1998 Oct;72(10):8316–8320. doi: 10.1128/jvi.72.10.8316-8320.1998. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Wang J., Carpenter C. D., Simon A. E. Minimal sequence and structural requirements of a subgenomic RNA promoter for turnip crinkle virus. Virology. 1999 Jan 20;253(2):327–336. doi: 10.1006/viro.1998.9538. [DOI] [PubMed] [Google Scholar]
  37. Wang J., Simon A. E. Analysis of the two subgenomic RNA promoters for turnip crinkle virus in vivo and in vitro. Virology. 1997 May 26;232(1):174–186. doi: 10.1006/viro.1997.8550. [DOI] [PubMed] [Google Scholar]
  38. White K. A., Morris T. J. Nonhomologous RNA recombination in tombusviruses: generation and evolution of defective interfering RNAs by stepwise deletions. J Virol. 1994 Jan;68(1):14–24. doi: 10.1128/jvi.68.1.14-24.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  39. White K. A., Morris T. J. RNA determinants of junction site selection in RNA virus recombinants and defective interfering RNAs. RNA. 1995 Dec;1(10):1029–1040. [PMC free article] [PubMed] [Google Scholar]
  40. Wu B., White K. A. Formation and amplification of a novel tombusvirus defective RNA which lacks the 5' nontranslated region of the viral genome. J Virol. 1998 Dec;72(12):9897–9905. doi: 10.1128/jvi.72.12.9897-9905.1998. [DOI] [PMC free article] [PubMed] [Google Scholar]
  41. Xiong Z. G., Lommel S. A. Red clover necrotic mosaic virus infectious transcripts synthesized in vitro. Virology. 1991 May;182(1):388–392. doi: 10.1016/0042-6822(91)90687-7. [DOI] [PubMed] [Google Scholar]
  42. Zavriev S. K., Hickey C. M., Lommel S. A. Mapping of the red clover necrotic mosaic virus subgenomic RNA. Virology. 1996 Feb 15;216(2):407–410. doi: 10.1006/viro.1996.0076. [DOI] [PubMed] [Google Scholar]
  43. van der Kuyl A. C., Langereis K., Houwing C. J., Jaspars E. M., Bol J. F. cis-acting elements involved in replication of alfalfa mosaic virus RNAs in vitro. Virology. 1990 Jun;176(2):346–354. doi: 10.1016/0042-6822(90)90004-b. [DOI] [PubMed] [Google Scholar]

Articles from RNA are provided here courtesy of The RNA Society

RESOURCES