Skip to main content
RNA logoLink to RNA
. 1999 Apr;5(4):585–595. doi: 10.1017/s135583829998202x

UV-induced modifications in the peptidyl transferase loop of 23S rRNA dependent on binding of the streptogramin B antibiotic, pristinamycin IA.

B T Porse 1, S V Kirillov 1, M J Awayez 1, R A Garrett 1
PMCID: PMC1369784  PMID: 10199574

Abstract

The naturally occurring streptogramin B antibiotic, pristinamycin IA, which inhibits peptide elongation, can produce two modifications in 23S rRNA when bound to the Escherichia coli 70S ribosome and irradiated at 365 nm. Both drug-induced effects map to highly conserved nucleotides within the functionally important peptidyl transferase loop of 23S rRNA at positions m2A2503/psi2504 and G2061/A2062. The modification yields are influenced strongly, and differentially, by P-site-bound tRNA and strongly by some of the peptidyl transferase antibiotics tested, with chloramphenicol producing a shift in the latter modification to A2062/C2063. Pristinamycin IA can also produce a modification on binding to deproteinized, mature 23S rRNA, at position U2500/C2501. The same modification occurs on an approximately 37-nt fragment, encompassing positions approximately 2496-2532 of the peptidyl transferase loop that was excised from the mature rRNA using RNAse H. In contrast, no antibiotic-induced effects were observed on in vitro T7 transcripts of full-length 23S rRNA, domain V, or on a fragment extending from positions approximately 2496-2566, which indicates that one or more posttranscriptional modifications within the sequence Cm-C-U-C-G-m2A-psi-G2505 are important for pristinamycin IA binding and/or the antibiotic-dependent modification of 23S rRNA.

Full Text

The Full Text of this article is available as a PDF (873.1 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Andersson S., Kurland C. G. Elongating ribosomes in vivo are refractory to erythromycin. Biochimie. 1987 Aug;69(8):901–904. doi: 10.1016/0300-9084(87)90218-5. [DOI] [PubMed] [Google Scholar]
  2. Clays K., Di Giambattista M., Persoons A., Engelborghs Y. A fluorescence lifetime study of virginiamycin S using multifrequency phase fluorometry. Biochemistry. 1991 Jul 23;30(29):7271–7276. doi: 10.1021/bi00243a032. [DOI] [PubMed] [Google Scholar]
  3. Contreras A., Vázquez D. Cooperative and antagonistic interactions of peptidyl-tRNA and antibiotics with bacterial ribosomes. Eur J Biochem. 1977 Apr 15;74(3):539–547. doi: 10.1111/j.1432-1033.1977.tb11422.x. [DOI] [PubMed] [Google Scholar]
  4. Crooke S. T., Lemonidis K. M., Neilson L., Griffey R., Lesnik E. A., Monia B. P. Kinetic characteristics of Escherichia coli RNase H1: cleavage of various antisense oligonucleotide-RNA duplexes. Biochem J. 1995 Dec 1;312(Pt 2):599–608. doi: 10.1042/bj3120599. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Di Giambattista M., Chinali G., Cocito C. The molecular basis of the inhibitory activities of type A and type B synergimycins and related antibiotics on ribosomes. J Antimicrob Chemother. 1989 Oct;24(4):485–507. doi: 10.1093/jac/24.4.485. [DOI] [PubMed] [Google Scholar]
  6. Di Giambattista M., Engelborghs Y., Nyssen E., Cocito C. Kinetics of binding of macrolides, lincosamides, and synergimycins to ribosomes. J Biol Chem. 1987 Jun 25;262(18):8591–8597. [PubMed] [Google Scholar]
  7. Di Giambattista M., Ide G., Engelborghs Y., Cocito C. Analysis of fluorescence quenching of ribosome-bound virginiamycin S. J Biol Chem. 1984 May 25;259(10):6334–6339. [PubMed] [Google Scholar]
  8. Di Giambattista M., Nyssen E., Pecher A., Cocito C. Affinity labeling of the virginiamycin S binding site on bacterial ribosome. Biochemistry. 1990 Oct 2;29(39):9203–9211. doi: 10.1021/bi00491a014. [DOI] [PubMed] [Google Scholar]
  9. Hahner S., Lüdemann H. C., Kirpekar F., Nordhoff E., Roepstorff P., Galla H. J., Hillenkamp F. Matrix-assisted laser desorption/ionization mass spectrometry (MALDI) of endonuclease digests of RNA. Nucleic Acids Res. 1997 May 15;25(10):1957–1964. doi: 10.1093/nar/25.10.1957. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Hall C. C., Johnson D., Cooperman B. S. [3H]-p-azidopuromycin photoaffinity labeling of Escherichia coli ribosomes: evidence for site-specific interaction at U-2504 and G-2502 in domain V of 23S ribosomal RNA. Biochemistry. 1988 May 31;27(11):3983–3990. doi: 10.1021/bi00411a014. [DOI] [PubMed] [Google Scholar]
  11. Kirillov S. V., Makhno V. I., Semenkov Y. P. The mechanism of codon-anticodon interaction in ribosomes. Quantitative study of codon-dependent binding of tRNA to the 30-S ribosomal subunits of Escherichia coli. Eur J Biochem. 1978 Aug 15;89(1):297–304. doi: 10.1111/j.1432-1033.1978.tb20927.x. [DOI] [PubMed] [Google Scholar]
  12. Kirillov S., Porse B. T., Vester B., Woolley P., Garrett R. A. Movement of the 3'-end of tRNA through the peptidyl transferase centre and its inhibition by antibiotics. FEBS Lett. 1997 Apr 14;406(3):223–233. doi: 10.1016/s0014-5793(97)00261-5. [DOI] [PubMed] [Google Scholar]
  13. Kowalak J. A., Bruenger E., McCloskey J. A. Posttranscriptional modification of the central loop of domain V in Escherichia coli 23 S ribosomal RNA. J Biol Chem. 1995 Jul 28;270(30):17758–17764. doi: 10.1074/jbc.270.30.17758. [DOI] [PubMed] [Google Scholar]
  14. Moazed D., Noller H. F. Chloramphenicol, erythromycin, carbomycin and vernamycin B protect overlapping sites in the peptidyl transferase region of 23S ribosomal RNA. Biochimie. 1987 Aug;69(8):879–884. doi: 10.1016/0300-9084(87)90215-x. [DOI] [PubMed] [Google Scholar]
  15. O'Connor M., Brunelli C. A., Firpo M. A., Gregory S. T., Lieberman K. R., Lodmell J. S., Moine H., Van Ryk D. I., Dahlberg A. E. Genetic probes of ribosomal RNA function. Biochem Cell Biol. 1995 Nov-Dec;73(11-12):859–868. doi: 10.1139/o95-093. [DOI] [PubMed] [Google Scholar]
  16. Ostergaard P., Phan H., Johansen L. B., Egebjerg J., Ostergaard L., Porse B. T., Garrett R. A. Assembly of proteins and 5 S rRNA to transcripts of the major structural domains of 23 S rRNA. J Mol Biol. 1998 Nov 27;284(2):227–240. doi: 10.1006/jmbi.1998.2185. [DOI] [PubMed] [Google Scholar]
  17. Porse B. T., Garrett R. A. Mapping important nucleotides in the peptidyl transferase centre of 23 S rRNA using a random mutagenesis approach. J Mol Biol. 1995 May 26;249(1):1–10. doi: 10.1006/jmbi.1995.0276. [DOI] [PubMed] [Google Scholar]
  18. Porse B. T., Garrett R. A. Sites of interaction of streptogramin A and B antibiotics in the peptidyl transferase loop of 23 S rRNA and the synergism of their inhibitory mechanisms. J Mol Biol. 1999 Feb 19;286(2):375–387. doi: 10.1006/jmbi.1998.2509. [DOI] [PubMed] [Google Scholar]
  19. Purohit P., Stern S. Interactions of a small RNA with antibiotic and RNA ligands of the 30S subunit. Nature. 1994 Aug 25;370(6491):659–662. doi: 10.1038/370659a0. [DOI] [PubMed] [Google Scholar]
  20. Recht M. I., Fourmy D., Blanchard S. C., Dahlquist K. D., Puglisi J. D. RNA sequence determinants for aminoglycoside binding to an A-site rRNA model oligonucleotide. J Mol Biol. 1996 Oct 4;262(4):421–436. doi: 10.1006/jmbi.1996.0526. [DOI] [PubMed] [Google Scholar]
  21. Rodriguez-Fonseca C., Amils R., Garrett R. A. Fine structure of the peptidyl transferase centre on 23 S-like rRNAs deduced from chemical probing of antibiotic-ribosome complexes. J Mol Biol. 1995 Mar 24;247(2):224–235. doi: 10.1006/jmbi.1994.0135. [DOI] [PubMed] [Google Scholar]
  22. Ryan P. C., Lu M., Draper D. E. Recognition of the highly conserved GTPase center of 23 S ribosomal RNA by ribosomal protein L11 and the antibiotic thiostrepton. J Mol Biol. 1991 Oct 20;221(4):1257–1268. doi: 10.1016/0022-2836(91)90932-v. [DOI] [PubMed] [Google Scholar]
  23. Thompson J., Cundliffe E. The binding of thiostrepton to 23S ribosomal RNA. Biochimie. 1991 Jul-Aug;73(7-8):1131–1135. doi: 10.1016/0300-9084(91)90156-u. [DOI] [PubMed] [Google Scholar]
  24. Vannuffel P., Di Giambattista M., Cocito C. The role of rRNA bases in the interaction of peptidyltransferase inhibitors with bacterial ribosomes. J Biol Chem. 1992 Aug 15;267(23):16114–16120. [PubMed] [Google Scholar]
  25. Vester B., Garrett R. A. The importance of highly conserved nucleotides in the binding region of chloramphenicol at the peptidyl transfer centre of Escherichia coli 23S ribosomal RNA. EMBO J. 1988 Nov;7(11):3577–3587. doi: 10.1002/j.1460-2075.1988.tb03235.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Vázquez D. Inhibitors of protein biosynthesis. Mol Biol Biochem Biophys. 1979;30:i-x, 1-312. doi: 10.1007/978-3-642-81309-2. [DOI] [PubMed] [Google Scholar]
  27. de Bethune M. P., Nierhaus K. H. Characterisation of the binding of virginiamycin S to Escherichia coli ribosomes. Eur J Biochem. 1978 May;86(1):187–191. doi: 10.1111/j.1432-1033.1978.tb12298.x. [DOI] [PubMed] [Google Scholar]

Articles from RNA are provided here courtesy of The RNA Society

RESOURCES