Abstract
Highly efficient cap-independent translation initiation at the 5'-proximal AUG is facilitated by the 3' translation enhancer sequence (3'TE) located near the 3' end of barley yellow dwarf virus (BYDV) genomic RNA. The role of the 3'TE in regulating viral translation was examined. The 3'TE is required for translation and thus replication of the genomic RNA that lacks a 5' cap (Allen et al., 1999, Virology253:139-144). Here we show that the 3'TE also mediates translation of uncapped viral subgenomic mRNAs (sgRNA1 and sgRNA2). A 109-nt viral sequence is sufficient for 3'TE activity in vitro, but additional viral sequence is necessary for cap-independent translation in vivo. The 5' extremity of the sequence required in the 3' untranslated region (UTR) for cap-independent translation in vivo coincides with the 5' end of sgRNA2. Thus, sgRNA2 has the 3'TE in its 5' UTR. Competition studies using physiological ratios of viral RNAs showed that, in trans, the 109-nt 3'TE alone, or in the context of 869-nt sgRNA2, inhibited translation of genomic RNA much more than it inhibited translation of sgRNA1. The divergent 5' UTRs of genomic RNA and sgRNA1 contribute to this differential susceptibility to inhibition. We propose that sgRNA2 serves as a novel regulatory RNA to carry out the switch from early to late gene expression. Thus, this new mechanism for temporal control of translation control involves a sequence that stimulates translation in cis and acts in trans to selectively inhibit translation of viral mRNA.
Full Text
The Full Text of this article is available as a PDF (527.1 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Allen E., Wang S., Miller W. A. Barley yellow dwarf virus RNA requires a cap-independent translation sequence because it lacks a 5' cap. Virology. 1999 Jan 20;253(2):139–144. doi: 10.1006/viro.1998.9507. [DOI] [PubMed] [Google Scholar]
- Brown C. M., Dinesh-Kumar S. P., Miller W. A. Local and distant sequences are required for efficient readthrough of the barley yellow dwarf virus PAV coat protein gene stop codon. J Virol. 1996 Sep;70(9):5884–5892. doi: 10.1128/jvi.70.9.5884-5892.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Browning K. S. The plant translational apparatus. Plant Mol Biol. 1996 Oct;32(1-2):107–144. doi: 10.1007/BF00039380. [DOI] [PubMed] [Google Scholar]
- Danthinne X., Seurinck J., Meulewaeter F., Van Montagu M., Cornelissen M. The 3' untranslated region of satellite tobacco necrosis virus RNA stimulates translation in vitro. Mol Cell Biol. 1993 Jun;13(6):3340–3349. doi: 10.1128/mcb.13.6.3340. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Di R., Dinesh-Kumar S. P., Miller W. A. Translational frameshifting by barley yellow dwarf virus RNA (PAV serotype) in Escherichia coli and in eukaryotic cell-free extracts. Mol Plant Microbe Interact. 1993 Jul-Aug;6(4):444–452. doi: 10.1094/mpmi-6-444. [DOI] [PubMed] [Google Scholar]
- Dinesh-Kumar S. P., Brault V., Miller W. A. Precise mapping and in vitro translation of a trifunctional subgenomic RNA of barley yellow dwarf virus. Virology. 1992 Apr;187(2):711–722. doi: 10.1016/0042-6822(92)90474-4. [DOI] [PubMed] [Google Scholar]
- Dinesh-Kumar S. P., Miller W. A. Control of start codon choice on a plant viral RNA encoding overlapping genes. Plant Cell. 1993 Jun;5(6):679–692. doi: 10.1105/tpc.5.6.679. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Filichkin S. A., Lister R. M., McGrath P. F., Young M. J. In vivo expression and mutational analysis of the barley yellow dwarf virus readthrough gene. Virology. 1994 Nov 15;205(1):290–299. doi: 10.1006/viro.1994.1645. [DOI] [PubMed] [Google Scholar]
- Gallie D. R., Feder J. N., Schimke R. T., Walbot V. Post-transcriptional regulation in higher eukaryotes: the role of the reporter gene in controlling expression. Mol Gen Genet. 1991 Aug;228(1-2):258–264. doi: 10.1007/BF00282474. [DOI] [PubMed] [Google Scholar]
- Gallie D. R. The cap and poly(A) tail function synergistically to regulate mRNA translational efficiency. Genes Dev. 1991 Nov;5(11):2108–2116. doi: 10.1101/gad.5.11.2108. [DOI] [PubMed] [Google Scholar]
- Gallie D. R., Walbot V. RNA pseudoknot domain of tobacco mosaic virus can functionally substitute for a poly(A) tail in plant and animal cells. Genes Dev. 1990 Jul;4(7):1149–1157. doi: 10.1101/gad.4.7.1149. [DOI] [PubMed] [Google Scholar]
- Gingras A. C., Sonenberg N. Adenovirus infection inactivates the translational inhibitors 4E-BP1 and 4E-BP2. Virology. 1997 Oct 13;237(1):182–186. doi: 10.1006/viro.1997.8757. [DOI] [PubMed] [Google Scholar]
- Hann L. E., Webb A. C., Cai J. M., Gehrke L. Identification of a competitive translation determinant in the 3' untranslated region of alfalfa mosaic virus coat protein mRNA. Mol Cell Biol. 1997 Apr;17(4):2005–2013. doi: 10.1128/mcb.17.4.2005. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hentze M. W. eIF4G: a multipurpose ribosome adapter? Science. 1997 Jan 24;275(5299):500–501. doi: 10.1126/science.275.5299.500. [DOI] [PubMed] [Google Scholar]
- Jackson R. J., Kaminski A. Internal initiation of translation in eukaryotes: the picornavirus paradigm and beyond. RNA. 1995 Dec;1(10):985–1000. [PMC free article] [PubMed] [Google Scholar]
- Kelly L., Gerlach W. L., Waterhouse P. M. Characterisation of the subgenomic RNAs of an Australian isolate of barley yellow dwarf luteovirus. Virology. 1994 Aug 1;202(2):565–573. doi: 10.1006/viro.1994.1378. [DOI] [PubMed] [Google Scholar]
- Kleijn M., Vrins C. L., Voorma H. O., Thomas A. A. Phosphorylation state of the cap-binding protein eIF4E during viral infection. Virology. 1996 Mar 15;217(2):486–494. doi: 10.1006/viro.1996.0143. [DOI] [PubMed] [Google Scholar]
- Koonin E. V., Dolja V. V. Evolution and taxonomy of positive-strand RNA viruses: implications of comparative analysis of amino acid sequences. Crit Rev Biochem Mol Biol. 1993;28(5):375–430. doi: 10.3109/10409239309078440. [DOI] [PubMed] [Google Scholar]
- Kozak M. The scanning model for translation: an update. J Cell Biol. 1989 Feb;108(2):229–241. doi: 10.1083/jcb.108.2.229. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Leathers V., Tanguay R., Kobayashi M., Gallie D. R. A phylogenetically conserved sequence within viral 3' untranslated RNA pseudoknots regulates translation. Mol Cell Biol. 1993 Sep;13(9):5331–5347. doi: 10.1128/mcb.13.9.5331. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lesnaw J. A., Reichmann M. E. Identity of the 5'-terminal RNA nucleotide sequence of the satellite tobacco necrosis virus and its helper virus: possible role of the 5'-terminus in the recognition by virus-specific RNA replicase. Proc Natl Acad Sci U S A. 1970 May;66(1):140–145. doi: 10.1073/pnas.66.1.140. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Mayo M. A., Ziegler-Graff V. Molecular biology of luteoviruses. Adv Virus Res. 1996;46:413–460. doi: 10.1016/s0065-3527(08)60077-9. [DOI] [PubMed] [Google Scholar]
- Meulewaeter F., Danthinne X., Van Montagu M., Cornelissen M. 5'- and 3'-sequences of satellite tobacco necrosis virus RNA promoting translation in tobacco. Plant J. 1998 Apr;14(2):169–176. doi: 10.1046/j.1365-313x.1998.00104.x. [DOI] [PubMed] [Google Scholar]
- Mohan B. R., Dinesh-Kumar S. P., Miller W. A. Genes and cis-acting sequences involved in replication of barley yellow dwarf virus-PAV RNA. Virology. 1995 Sep 10;212(1):186–195. doi: 10.1006/viro.1995.1467. [DOI] [PubMed] [Google Scholar]
- Pelletier J., Sonenberg N. Internal initiation of translation of eukaryotic mRNA directed by a sequence derived from poliovirus RNA. Nature. 1988 Jul 28;334(6180):320–325. doi: 10.1038/334320a0. [DOI] [PubMed] [Google Scholar]
- Pestova T. V., Hellen C. U., Shatsky I. N. Canonical eukaryotic initiation factors determine initiation of translation by internal ribosomal entry. Mol Cell Biol. 1996 Dec;16(12):6859–6869. doi: 10.1128/mcb.16.12.6859. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Pestova T. V., Shatsky I. N., Fletcher S. P., Jackson R. J., Hellen C. U. A prokaryotic-like mode of cytoplasmic eukaryotic ribosome binding to the initiation codon during internal translation initiation of hepatitis C and classical swine fever virus RNAs. Genes Dev. 1998 Jan 1;12(1):67–83. doi: 10.1101/gad.12.1.67. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Preiss T., Hentze M. W. Dual function of the messenger RNA cap structure in poly(A)-tail-promoted translation in yeast. Nature. 1998 Apr 2;392(6675):516–520. doi: 10.1038/33192. [DOI] [PubMed] [Google Scholar]
- Sachs A. B., Sarnow P., Hentze M. W. Starting at the beginning, middle, and end: translation initiation in eukaryotes. Cell. 1997 Jun 13;89(6):831–838. doi: 10.1016/s0092-8674(00)80268-8. [DOI] [PubMed] [Google Scholar]
- Schneider R. J. Cap-independent translation in adenovirus infected cells. Curr Top Microbiol Immunol. 1995;203:117–129. doi: 10.1007/978-3-642-79663-0_6. [DOI] [PubMed] [Google Scholar]
- Shams-bakhsh M., Symons R. H. Barley yellow dwarf virus-PAV RNA does not have a VPg. Arch Virol. 1997;142(12):2529–2535. doi: 10.1007/s007050050260. [DOI] [PubMed] [Google Scholar]
- Sit T. L., Vaewhongs A. A., Lommel S. A. RNA-mediated trans-activation of transcription from a viral RNA. Science. 1998 Aug 7;281(5378):829–832. doi: 10.1126/science.281.5378.829. [DOI] [PubMed] [Google Scholar]
- Sleat D. E., Gallie D. R., Jefferson R. A., Bevan M. W., Turner P. C., Wilson T. M. Characterisation of the 5'-leader sequence of tobacco mosaic virus RNA as a general enhancer of translation in vitro. Gene. 1987;60(2-3):217–225. doi: 10.1016/0378-1119(87)90230-7. [DOI] [PubMed] [Google Scholar]
- Sonenberg N., Gingras A. C. The mRNA 5' cap-binding protein eIF4E and control of cell growth. Curr Opin Cell Biol. 1998 Apr;10(2):268–275. doi: 10.1016/s0955-0674(98)80150-6. [DOI] [PubMed] [Google Scholar]
- Tarun S. Z., Jr, Sachs A. B. A common function for mRNA 5' and 3' ends in translation initiation in yeast. Genes Dev. 1995 Dec 1;9(23):2997–3007. doi: 10.1101/gad.9.23.2997. [DOI] [PubMed] [Google Scholar]
- Tarun S. Z., Jr, Wells S. E., Deardorff J. A., Sachs A. B. Translation initiation factor eIF4G mediates in vitro poly(A) tail-dependent translation. Proc Natl Acad Sci U S A. 1997 Aug 19;94(17):9046–9051. doi: 10.1073/pnas.94.17.9046. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Timmer R. T., Benkowski L. A., Schodin D., Lax S. R., Metz A. M., Ravel J. M., Browning K. S. The 5' and 3' untranslated regions of satellite tobacco necrosis virus RNA affect translational efficiency and dependence on a 5' cap structure. J Biol Chem. 1993 May 5;268(13):9504–9510. [PubMed] [Google Scholar]
- Wang C., Sarnow P., Siddiqui A. Translation of human hepatitis C virus RNA in cultured cells is mediated by an internal ribosome-binding mechanism. J Virol. 1993 Jun;67(6):3338–3344. doi: 10.1128/jvi.67.6.3338-3344.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wang S., Browning K. S., Miller W. A. A viral sequence in the 3'-untranslated region mimics a 5' cap in facilitating translation of uncapped mRNA. EMBO J. 1997 Jul 1;16(13):4107–4116. doi: 10.1093/emboj/16.13.4107. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wang S., Miller W. A. A sequence located 4.5 to 5 kilobases from the 5' end of the barley yellow dwarf virus (PAV) genome strongly stimulates translation of uncapped mRNA. J Biol Chem. 1995 Jun 2;270(22):13446–13452. doi: 10.1074/jbc.270.22.13446. [DOI] [PubMed] [Google Scholar]
- Weber H., Billeter M. A., Kahane S., Weissmann C., Hindley J., Porter A. Molecular basis for repressor activity of Q replicase. Nat New Biol. 1972 Jun 7;237(75):166–170. doi: 10.1038/newbio237166a0. [DOI] [PubMed] [Google Scholar]
- Zelenina D. A., Kulaeva O. I., Smirnyagina E. V., Solovyev A. G., Miroshnichenko N. A., Fedorkin O. N., Rodionova N. P., Morozov SYu, Atabekov J. G. Translation enhancing properties of the 5'-leader of potato virus X genomic RNA. FEBS Lett. 1992 Jan 27;296(3):267–270. doi: 10.1016/0014-5793(92)80301-v. [DOI] [PubMed] [Google Scholar]