Skip to main content
RNA logoLink to RNA
. 1999 Jun;5(6):794–804. doi: 10.1017/s1355838299982055

Mutations in the MOF2/SUI1 gene affect both translation and nonsense-mediated mRNA decay.

Y Cui 1, C I González 1, T G Kinzy 1, J D Dinman 1, S W Peltz 1
PMCID: PMC1369805  PMID: 10376878

Abstract

Recent studies have demonstrated that cells have evolved elaborate mechanisms to rid themselves of aberrant proteins and transcripts. The nonsense-mediated mRNA decay pathway (NMD) is an example of a pathway that eliminates aberrant mRNAs. In yeast, a transcript is recognized as aberrant and is rapidly degraded if a specific sequence, called the DSE, is present 3' of a premature termination codon. Results presented here show that strains harboring the mof2-1, mof4-1, mof5-1, and mof8-1 alleles, previously demonstrated to increase the efficiency of programmed -1 ribosomal frameshifting, decrease the activity of the NMD pathway. The effect of the mof2-1 allele on NMD was characterized in more detail. Previous results demonstrated that the wild-type MOF2 gene is identical to the SUI1 gene. Studies on the mof2-1 allele of the SUI1 gene indicate that in addition to its role in recognition of the AUG codon during translation initiation and maintenance of the appropriate reading frame during translation elongation, the Mof2 protein plays a role in the NMD pathway. The Mof2p/Sui1 p is conserved throughout nature and the human homolog of the Mof2p/Sui1p functions in yeast cells to activate NMD. These results suggest that factors involved in NMD are general modulators that act in several aspects of translation and mRNA turnover.

Full Text

The Full Text of this article is available as a PDF (847.2 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Alani E., Cao L., Kleckner N. A method for gene disruption that allows repeated use of URA3 selection in the construction of multiply disrupted yeast strains. Genetics. 1987 Aug;116(4):541–545. doi: 10.1534/genetics.112.541.test. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Altamura N., Groudinsky O., Dujardin G., Slonimski P. P. NAM7 nuclear gene encodes a novel member of a family of helicases with a Zn-ligand motif and is involved in mitochondrial functions in Saccharomyces cerevisiae. J Mol Biol. 1992 Apr 5;224(3):575–587. doi: 10.1016/0022-2836(92)90545-u. [DOI] [PubMed] [Google Scholar]
  3. Applequist S. E., Selg M., Raman C., Jäck H. M. Cloning and characterization of HUPF1, a human homolog of the Saccharomyces cerevisiae nonsense mRNA-reducing UPF1 protein. Nucleic Acids Res. 1997 Feb 15;25(4):814–821. doi: 10.1093/nar/25.4.814. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Burgess S. M., Guthrie C. Beat the clock: paradigms for NTPases in the maintenance of biological fidelity. Trends Biochem Sci. 1993 Oct;18(10):381–384. doi: 10.1016/0968-0004(93)90094-4. [DOI] [PubMed] [Google Scholar]
  5. Caponigro G., Parker R. Mechanisms and control of mRNA turnover in Saccharomyces cerevisiae. Microbiol Rev. 1996 Mar;60(1):233–249. doi: 10.1128/mr.60.1.233-249.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Castilho-Valavicius B., Yoon H., Donahue T. F. Genetic characterization of the Saccharomyces cerevisiae translational initiation suppressors sui1, sui2 and SUI3 and their effects on HIS4 expression. Genetics. 1990 Mar;124(3):483–495. doi: 10.1093/genetics/124.3.483. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Castilho-Valavicius B., Yoon H., Donahue T. F. Genetic characterization of the Saccharomyces cerevisiae translational initiation suppressors sui1, sui2 and SUI3 and their effects on HIS4 expression. Genetics. 1990 Mar;124(3):483–495. doi: 10.1093/genetics/124.3.483. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Chandler M., Fayet O. Translational frameshifting in the control of transposition in bacteria. Mol Microbiol. 1993 Feb;7(4):497–503. doi: 10.1111/j.1365-2958.1993.tb01140.x. [DOI] [PubMed] [Google Scholar]
  9. Cui Y., Dinman J. D., Kinzy T. G., Peltz S. W. The Mof2/Sui1 protein is a general monitor of translational accuracy. Mol Cell Biol. 1998 Mar;18(3):1506–1516. doi: 10.1128/mcb.18.3.1506. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Cui Y., Dinman J. D., Peltz S. W. Mof4-1 is an allele of the UPF1/IFS2 gene which affects both mRNA turnover and -1 ribosomal frameshifting efficiency. EMBO J. 1996 Oct 15;15(20):5726–5736. doi: 10.1002/j.1460-2075.1996.tb00956.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Cui Y., Hagan K. W., Zhang S., Peltz S. W. Identification and characterization of genes that are required for the accelerated degradation of mRNAs containing a premature translational termination codon. Genes Dev. 1995 Feb 15;9(4):423–436. doi: 10.1101/gad.9.4.423. [DOI] [PubMed] [Google Scholar]
  12. Czaplinski K., Ruiz-Echevarria M. J., Paushkin S. V., Han X., Weng Y., Perlick H. A., Dietz H. C., Ter-Avanesyan M. D., Peltz S. W. The surveillance complex interacts with the translation release factors to enhance termination and degrade aberrant mRNAs. Genes Dev. 1998 Jun 1;12(11):1665–1677. doi: 10.1101/gad.12.11.1665. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Czaplinski K., Weng Y., Hagan K. W., Peltz S. W. Purification and characterization of the Upf1 protein: a factor involved in translation and mRNA degradation. RNA. 1995 Aug;1(6):610–623. [PMC free article] [PubMed] [Google Scholar]
  14. Dinman J. D. Ribosomal frameshifting in yeast viruses. Yeast. 1995 Sep 30;11(12):1115–1127. doi: 10.1002/yea.320111202. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Dinman J. D., Wickner R. B. Ribosomal frameshifting efficiency and gag/gag-pol ratio are critical for yeast M1 double-stranded RNA virus propagation. J Virol. 1992 Jun;66(6):3669–3676. doi: 10.1128/jvi.66.6.3669-3676.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Dinman J. D., Wickner R. B. Translational maintenance of frame: mutants of Saccharomyces cerevisiae with altered -1 ribosomal frameshifting efficiencies. Genetics. 1994 Jan;136(1):75–86. doi: 10.1093/genetics/136.1.75. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Farabaugh P. J. Post-transcriptional regulation of transposition by Ty retrotransposons of Saccharomyces cerevisiae. J Biol Chem. 1995 May 5;270(18):10361–10364. doi: 10.1074/jbc.270.18.10361. [DOI] [PubMed] [Google Scholar]
  18. Fields C., Adams M. D. Expressed sequence tags identify a human isolog of the suil translation initiation factor. Biochem Biophys Res Commun. 1994 Jan 14;198(1):288–291. doi: 10.1006/bbrc.1994.1040. [DOI] [PubMed] [Google Scholar]
  19. Garcia-Barrio M. T., Naranda T., Vazquez de Aldana C. R., Cuesta R., Hinnebusch A. G., Hershey J. W., Tamame M. GCD10, a translational repressor of GCN4, is the RNA-binding subunit of eukaryotic translation initiation factor-3. Genes Dev. 1995 Jul 15;9(14):1781–1796. doi: 10.1101/gad.9.14.1781. [DOI] [PubMed] [Google Scholar]
  20. Gottesman S., Wickner S., Maurizi M. R. Protein quality control: triage by chaperones and proteases. Genes Dev. 1997 Apr 1;11(7):815–823. doi: 10.1101/gad.11.7.815. [DOI] [PubMed] [Google Scholar]
  21. Hagan K. W., Ruiz-Echevarria M. J., Quan Y., Peltz S. W. Characterization of cis-acting sequences and decay intermediates involved in nonsense-mediated mRNA turnover. Mol Cell Biol. 1995 Feb;15(2):809–823. doi: 10.1128/mcb.15.2.809. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Hayashi S., Murakami Y. Rapid and regulated degradation of ornithine decarboxylase. Biochem J. 1995 Feb 15;306(Pt 1):1–10. doi: 10.1042/bj3060001. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. He F., Brown A. H., Jacobson A. Upf1p, Nmd2p, and Upf3p are interacting components of the yeast nonsense-mediated mRNA decay pathway. Mol Cell Biol. 1997 Mar;17(3):1580–1594. doi: 10.1128/mcb.17.3.1580. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. He F., Jacobson A. Identification of a novel component of the nonsense-mediated mRNA decay pathway by use of an interacting protein screen. Genes Dev. 1995 Feb 15;9(4):437–454. doi: 10.1101/gad.9.4.437. [DOI] [PubMed] [Google Scholar]
  25. He F., Peltz S. W., Donahue J. L., Rosbash M., Jacobson A. Stabilization and ribosome association of unspliced pre-mRNAs in a yeast upf1- mutant. Proc Natl Acad Sci U S A. 1993 Aug 1;90(15):7034–7038. doi: 10.1073/pnas.90.15.7034. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Jacobson A., Peltz S. W. Interrelationships of the pathways of mRNA decay and translation in eukaryotic cells. Annu Rev Biochem. 1996;65:693–739. doi: 10.1146/annurev.bi.65.070196.003401. [DOI] [PubMed] [Google Scholar]
  27. Koonin E. V. A new group of putative RNA helicases. Trends Biochem Sci. 1992 Dec;17(12):495–497. doi: 10.1016/0968-0004(92)90338-a. [DOI] [PubMed] [Google Scholar]
  28. Kozak M. Regulation of translation in eukaryotic systems. Annu Rev Cell Biol. 1992;8:197–225. doi: 10.1146/annurev.cb.08.110192.001213. [DOI] [PubMed] [Google Scholar]
  29. Lee B. S., Culbertson M. R. Identification of an additional gene required for eukaryotic nonsense mRNA turnover. Proc Natl Acad Sci U S A. 1995 Oct 24;92(22):10354–10358. doi: 10.1073/pnas.92.22.10354. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Leeds P., Peltz S. W., Jacobson A., Culbertson M. R. The product of the yeast UPF1 gene is required for rapid turnover of mRNAs containing a premature translational termination codon. Genes Dev. 1991 Dec;5(12A):2303–2314. doi: 10.1101/gad.5.12a.2303. [DOI] [PubMed] [Google Scholar]
  31. Leeds P., Wood J. M., Lee B. S., Culbertson M. R. Gene products that promote mRNA turnover in Saccharomyces cerevisiae. Mol Cell Biol. 1992 May;12(5):2165–2177. doi: 10.1128/mcb.12.5.2165. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Maquat L. E. When cells stop making sense: effects of nonsense codons on RNA metabolism in vertebrate cells. RNA. 1995 Jul;1(5):453–465. [PMC free article] [PubMed] [Google Scholar]
  33. Merrick W. C. Mechanism and regulation of eukaryotic protein synthesis. Microbiol Rev. 1992 Jun;56(2):291–315. doi: 10.1128/mr.56.2.291-315.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Muhlrad D., Parker R. Premature translational termination triggers mRNA decapping. Nature. 1994 Aug 18;370(6490):578–581. doi: 10.1038/370578a0. [DOI] [PubMed] [Google Scholar]
  35. Naranda T., MacMillan S. E., Donahue T. F., Hershey J. W. SUI1/p16 is required for the activity of eukaryotic translation initiation factor 3 in Saccharomyces cerevisiae. Mol Cell Biol. 1996 May;16(5):2307–2313. doi: 10.1128/mcb.16.5.2307. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Perlick H. A., Medghalchi S. M., Spencer F. A., Kendzior R. J., Jr, Dietz H. C. Mammalian orthologues of a yeast regulator of nonsense transcript stability. Proc Natl Acad Sci U S A. 1996 Oct 1;93(20):10928–10932. doi: 10.1073/pnas.93.20.10928. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Pestova T. V., Borukhov S. I., Hellen C. U. Eukaryotic ribosomes require initiation factors 1 and 1A to locate initiation codons. Nature. 1998 Aug 27;394(6696):854–859. doi: 10.1038/29703. [DOI] [PubMed] [Google Scholar]
  38. Pulak R., Anderson P. mRNA surveillance by the Caenorhabditis elegans smg genes. Genes Dev. 1993 Oct;7(10):1885–1897. doi: 10.1101/gad.7.10.1885. [DOI] [PubMed] [Google Scholar]
  39. Rodnina M. V., Pape T., Fricke R., Wintermeyer W. Elongation factor Tu, a GTPase triggered by codon recognition on the ribosome: mechanism and GTP consumption. Biochem Cell Biol. 1995 Nov-Dec;73(11-12):1221–1227. doi: 10.1139/o95-132. [DOI] [PubMed] [Google Scholar]
  40. Ruiz-Echevarria M. J., Czaplinski K., Peltz S. W. Making sense of nonsense in yeast. Trends Biochem Sci. 1996 Nov;21(11):433–438. doi: 10.1016/s0968-0004(96)10055-4. [DOI] [PubMed] [Google Scholar]
  41. Ruiz-Echevarria M. J., Peltz S. W. Utilizing the GCN4 leader region to investigate the role of the sequence determinants in nonsense-mediated mRNA decay. EMBO J. 1996 Jun 3;15(11):2810–2819. [PMC free article] [PubMed] [Google Scholar]
  42. Ruiz-Echevarría M. J., González C. I., Peltz S. W. Identifying the right stop: determining how the surveillance complex recognizes and degrades an aberrant mRNA. EMBO J. 1998 Jan 15;17(2):575–589. doi: 10.1093/emboj/17.2.575. [DOI] [PMC free article] [PubMed] [Google Scholar]
  43. Ruiz-Echevarría M. J., Yasenchak J. M., Han X., Dinman J. D., Peltz S. W. The upf3 protein is a component of the surveillance complex that monitors both translation and mRNA turnover and affects viral propagation. Proc Natl Acad Sci U S A. 1998 Jul 21;95(15):8721–8726. doi: 10.1073/pnas.95.15.8721. [DOI] [PMC free article] [PubMed] [Google Scholar]
  44. Suzuki C. K., Rep M., van Dijl J. M., Suda K., Grivell L. A., Schatz G. ATP-dependent proteases that also chaperone protein biogenesis. Trends Biochem Sci. 1997 Apr;22(4):118–123. doi: 10.1016/s0968-0004(97)01020-7. [DOI] [PubMed] [Google Scholar]
  45. Weng Y., Czaplinski K., Peltz S. W. ATP is a cofactor of the Upf1 protein that modulates its translation termination and RNA binding activities. RNA. 1998 Feb;4(2):205–214. [PMC free article] [PubMed] [Google Scholar]
  46. Weng Y., Czaplinski K., Peltz S. W. Genetic and biochemical characterization of mutations in the ATPase and helicase regions of the Upf1 protein. Mol Cell Biol. 1996 Oct;16(10):5477–5490. doi: 10.1128/mcb.16.10.5477. [DOI] [PMC free article] [PubMed] [Google Scholar]
  47. Weng Y., Czaplinski K., Peltz S. W. Identification and characterization of mutations in the UPF1 gene that affect nonsense suppression and the formation of the Upf protein complex but not mRNA turnover. Mol Cell Biol. 1996 Oct;16(10):5491–5506. doi: 10.1128/mcb.16.10.5491. [DOI] [PMC free article] [PubMed] [Google Scholar]
  48. Zhang S., Ruiz-Echevarria M. J., Quan Y., Peltz S. W. Identification and characterization of a sequence motif involved in nonsense-mediated mRNA decay. Mol Cell Biol. 1995 Apr;15(4):2231–2244. doi: 10.1128/mcb.15.4.2231. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from RNA are provided here courtesy of The RNA Society

RESOURCES