Skip to main content
RNA logoLink to RNA
. 1999 Jul;5(7):865–875. doi: 10.1017/s1355838299990118

Inosine and N1-methylinosine within a synthetic oligomer mimicking the anticodon loop of human tRNA(Ala) are major epitopes for anti-PL-12 myositis autoantibodies.

H F Becker 1, Y Corda 1, M B Mathews 1, J L Fourrey 1, H Grosjean 1
PMCID: PMC1369811  PMID: 10411130

Abstract

Sera of some patients afflicted with the inflammatory disease myositis contain antibodies of the anti-PL-12 type. A fraction of these polyclonal autoantibodies specifically precipitates the fully matured human tRNA(Ala) bearing the anticodon IGC (PL-12 antigen). Earlier work (Bunn & Mathews, 1987, Science 238:116-119) had shown that the epitopes are located entirely within the anticodon stem-loop of the tRNA(Ala). Here we demonstrate that human anti-tRNA(Ala) autoantibodies immunoprecipitate a synthetic polyribonucleotide containing inosine (I) and N1-methylinosine (m1I) separated by 2 nt as in the anticodon stem-loop of human tRNA(Ala). The shortest polyribonucleotide that can be immunoprecipitated corresponds to the pentanucleotide IpGpCpm1IpUp, which corresponds to part of the anticodon loop of human tRNA(Ala) and lacks the stem-loop structure. The efficiency of immunoprecipitation was about four times greater with longer polyribonucleotides capable of forming a stem-loop structure, and was abolished by altering the relative positions of I and m1I within the synthetic polynucleotide. Synthetic oligodeoxyribonucleotide analogs of the tRNA(Ala) stem-loop, containing the sequence dIpdGdCdm1Ip, are not antigenic. Our results show that human anti-tRNA(Ala) autoantibodies selectively recognize chemical details of modified nucleotides (the 6-keto group of inosine-34 and the 6-keto group and the N1-methyl groups of N1-methylinosine-37) within an anticodon loop structure of a tRNA molecule. We also describe the chemical synthesis of the phosphoramidite derivatives corresponding to N1-methylinosine and N1-methyl-2'-deoxyinosine for use in the automatic chemical synthesis of oligonucleotides containing N1-methylinosine and N1-methyl-2'-deoxyinosine.

Full Text

The Full Text of this article is available as a PDF (272.6 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Auxilien S., Crain P. F., Trewyn R. W., Grosjean H. Mechanism, specificity and general properties of the yeast enzyme catalysing the formation of inosine 34 in the anticodon of transfer RNA. J Mol Biol. 1996 Oct 4;262(4):437–458. doi: 10.1006/jmbi.1996.0527. [DOI] [PubMed] [Google Scholar]
  2. Boulanger C., Chabot B., Ménard H. A., Boire G. Autoantibodies in human anti-Ro sera specifically recognize deproteinized hY5 Ro RNA. Clin Exp Immunol. 1995 Jan;99(1):29–36. doi: 10.1111/j.1365-2249.1995.tb03468.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Braun R. P., Woodsworth M. L., Lee J. S. The immunogenic properties of poly(dI).poly(dC) and poly(rI). poly(dC)--analysis by monoclonal antibodies. Mol Immunol. 1986 Jun;23(6):685–691. doi: 10.1016/0161-5890(86)90107-0. [DOI] [PubMed] [Google Scholar]
  4. Brouwer R., Vree Egberts W., Jongen P. H., van Engelen B. G., van Venrooij W. J. Frequent occurrence of anti-tRNA(His) autoantibodies that recognize a conformational epitope in sera of patients with myositis. Arthritis Rheum. 1998 Aug;41(8):1428–1437. doi: 10.1002/1529-0131(199808)41:8<1428::AID-ART12>3.0.CO;2-J. [DOI] [PubMed] [Google Scholar]
  5. Bunn C. C., Bernstein R. M., Mathews M. B. Autoantibodies against alanyl-tRNA synthetase and tRNAAla coexist and are associated with myositis. J Exp Med. 1986 May 1;163(5):1281–1291. doi: 10.1084/jem.163.5.1281. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Bunn C. C., Mathews M. B. Autoreactive epitope defined as the anticodon region of alanine transfer RNA. Science. 1987 Nov 20;238(4830):1116–1119. doi: 10.1126/science.2446387. [DOI] [PubMed] [Google Scholar]
  7. Bunn C. C., Mathews M. B. Two human tRNA(Ala) families are recognized by autoantibodies in polymyositis sera. Mol Biol Med. 1987 Feb;4(1):21–36. [PubMed] [Google Scholar]
  8. Chu J. L., Brot N., Weissbach H., Elkon K. Lupus antiribosomal P antisera contain antibodies to a small fragment of 28S rRNA located in the proposed ribosomal GTPase center. J Exp Med. 1991 Sep 1;174(3):507–514. doi: 10.1084/jem.174.3.507. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Crain P. F., McCloskey J. A. The RNA modification database. Nucleic Acids Res. 1997 Jan 1;25(1):126–127. doi: 10.1093/nar/25.1.126. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. D'Ambrosio S. M., Gibson-D'Ambrosio R. E., Trewyn R. W. An enzyme-linked immunosorbent assay (ELISA) for the detection and quantitation of the tumor marker 1-methylinosine in human urine. Clin Chim Acta. 1991 Jun 14;199(2):119–128. doi: 10.1016/0009-8981(91)90103-j. [DOI] [PubMed] [Google Scholar]
  11. Damha M. J., Ogilvie K. K. Oligoribonucleotide synthesis. The silyl-phosphoramidite method. Methods Mol Biol. 1993;20:81–114. doi: 10.1385/0-89603-281-7:81. [DOI] [PubMed] [Google Scholar]
  12. Deutscher S. L., Keene J. D. A sequence-specific conformational epitope on U1 RNA is recognized by a unique autoantibody. Proc Natl Acad Sci U S A. 1988 May;85(10):3299–3303. doi: 10.1073/pnas.85.10.3299. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. England T. E., Bruce A. G., Uhlenbeck O. C. Specific labeling of 3' termini of RNA with T4 RNA ligase. Methods Enzymol. 1980;65(1):65–74. doi: 10.1016/s0076-6879(80)65011-3. [DOI] [PubMed] [Google Scholar]
  14. Fuchs S., Aharonov A., Sela M., von der Haar F., Cramer F. Antibodies to yeast phenylalanine transfer ribonucleic acid are specific for the odd nucleoside ) in the anticodon loop. Proc Natl Acad Sci U S A. 1974 Jul;71(7):2800–2802. doi: 10.1073/pnas.71.7.2800. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. García-Lozano J. R., González-Escribano M. F., Rodríguez R., Rodriguez-Sanchez J. L., Targoff I. N., Wichmann I., Núez-Roldán A. Detection of anti-PL-12 autoantibodies by ELISA using a recombinant antigen; study of the immunoreactive region. Clin Exp Immunol. 1998 Nov;114(2):161–165. doi: 10.1046/j.1365-2249.1998.00720.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Gasparutto D., Livache T., Bazin H., Duplaa A. M., Guy A., Khorlin A., Molko D., Roget A., Téoule R. Chemical synthesis of a biologically active natural tRNA with its minor bases. Nucleic Acids Res. 1992 Oct 11;20(19):5159–5166. doi: 10.1093/nar/20.19.5159. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Gelpí C., Kanterewicz E., Gratacos J., Targoff I. N., Rodríguez-Sánchez J. L. Coexistence of two antisynthetases in a patient with the antisynthetase syndrome. Arthritis Rheum. 1996 Apr;39(4):692–697. doi: 10.1002/art.1780390424. [DOI] [PubMed] [Google Scholar]
  18. Gelpí C., Martinez M. A., Vidal S., Targoff I. N., Rodriguez-Sanchez J. L. Autoantibodies to a transfer RNA-associated protein in a murine model of chronic graft versus host disease. J Immunol. 1994 Feb 15;152(4):1989–1999. [PubMed] [Google Scholar]
  19. Gerber A., Grosjean H., Melcher T., Keller W. Tad1p, a yeast tRNA-specific adenosine deaminase, is related to the mammalian pre-mRNA editing enzymes ADAR1 and ADAR2. EMBO J. 1998 Aug 17;17(16):4780–4789. doi: 10.1093/emboj/17.16.4780. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Green R., Szostak J. W., Benner S. A., Rich A., Usman N. Synthesis of RNA containing inosine: analysis of the sequence requirements for the 5' splice site of the Tetrahymena group I intron. Nucleic Acids Res. 1991 Aug 11;19(15):4161–4166. doi: 10.1093/nar/19.15.4161. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Grosjean H., Auxilien S., Constantinesco F., Simon C., Corda Y., Becker H. F., Foiret D., Morin A., Jin Y. X., Fournier M. Enzymatic conversion of adenosine to inosine and to N1-methylinosine in transfer RNAs: a review. Biochimie. 1996;78(6):488–501. doi: 10.1016/0300-9084(96)84755-9. [DOI] [PubMed] [Google Scholar]
  22. Hirakata M., Suwa A., Nagai S., Kron M. A., Trieu E. P., Mimori T., Akizuki M., Targoff I. N. Anti-KS: identification of autoantibodies to asparaginyl-transfer RNA synthetase associated with interstitial lung disease. J Immunol. 1999 Feb 15;162(4):2315–2320. [PubMed] [Google Scholar]
  23. Hoet R. M., van Venrooij W. J. B-cell epitopes of RNA autoantigens. Mol Biol Rep. 1992 Jun;16(3):199–205. doi: 10.1007/BF00464708. [DOI] [PubMed] [Google Scholar]
  24. Inouye H., Fuchs S., Sela M., Littauer U. Z. Anti-inosine antibodies. Biochim Biophys Acta. 1971 Jul 29;240(4):594–603. doi: 10.1016/0005-2787(71)90717-9. [DOI] [PubMed] [Google Scholar]
  25. Kato T., Sasakawa H., Suzuki S., Shirako M., Tashiro F., Nishioka K., Yamamoto K. Autoepitopes of the 52-kd SS-A/Ro molecule. Arthritis Rheum. 1995 Jul;38(7):990–998. doi: 10.1002/art.1780380716. [DOI] [PubMed] [Google Scholar]
  26. Keene J. D. RNA surfaces as functional mimetics of proteins. Chem Biol. 1996 Jul;3(7):505–513. doi: 10.1016/s1074-5521(96)90139-8. [DOI] [PubMed] [Google Scholar]
  27. Keith G. Mobilities of modified ribonucleotides on two-dimensional cellulose thin-layer chromatography. Biochimie. 1995;77(1-2):142–144. doi: 10.1016/0300-9084(96)88118-1. [DOI] [PubMed] [Google Scholar]
  28. Mathews M. B., Reichlin M., Hughes G. R., Bernstein R. M. Anti-threonyl-tRNA synthetase, a second myositis-related autoantibody. J Exp Med. 1984 Aug 1;160(2):420–434. doi: 10.1084/jem.160.2.420. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Matsumura M., Ohosone Y., Miyachi K., Akizuki M., Matsuoka Y., Irimajiri S., Shimizu M., Mimori T. Novel autoantibodies directed against the common tertiary configuration of transfer RNA in a patient with interstitial lung disease. Arthritis Rheum. 1996 Aug;39(8):1308–1312. doi: 10.1002/art.1780390807. [DOI] [PubMed] [Google Scholar]
  30. Mimori T. Structures targeted by the immune system in myositis. Curr Opin Rheumatol. 1996 Nov;8(6):521–527. doi: 10.1097/00002281-199611000-00005. [DOI] [PubMed] [Google Scholar]
  31. Nishikai M., Reichlin M. Heterogeneity of precipitating antibodies in polymyositis and dermatomyositis. Characterization of the Jo-1 antibody system. Arthritis Rheum. 1980 Aug;23(8):881–888. doi: 10.1002/art.1780230802. [DOI] [PubMed] [Google Scholar]
  32. Ohosone Y., Matsumura M., Chiba J., Nagaoka S., Matsuoka Y., Irimajiri S., Mimori T. Anti-transfer RNA antibodies in two patients with pulmonary fibrosis, Raynaud's phenomenon and polyarthritis. Clin Rheumatol. 1998;17(2):144–147. doi: 10.1007/BF01452262. [DOI] [PubMed] [Google Scholar]
  33. Ohtsuka E., Matsuki S., Ikehara M., Takahashi Y., Matsubara K. An alternative approach to deoxyoligonucleotides as hybridization probes by insertion of deoxyinosine at ambiguous codon positions. J Biol Chem. 1985 Mar 10;260(5):2605–2608. [PubMed] [Google Scholar]
  34. Okano Y., Medsger T. A., Jr Novel human autoantibodies reactive with 5'-terminal trimethylguanosine cap structures of U small nuclear RNA. J Immunol. 1992 Aug 1;149(3):1093–1098. [PubMed] [Google Scholar]
  35. Paley E. L., Alexandrova N., Smelansky L. Tryptophanyl-tRNA synthetase as a human autoantigen. Immunol Lett. 1995 Dec;48(3):201–207. doi: 10.1016/0165-2478(95)02469-7. [DOI] [PubMed] [Google Scholar]
  36. Plotz P. H., Rider L. G., Targoff I. N., Raben N., O'Hanlon T. P., Miller F. W. NIH conference. Myositis: immunologic contributions to understanding cause, pathogenesis, and therapy. Ann Intern Med. 1995 May 1;122(9):715–724. doi: 10.7326/0003-4819-122-9-199505010-00010. [DOI] [PubMed] [Google Scholar]
  37. Pokkuluri P. R., Bouthillier F., Li Y., Kuderova A., Lee J., Cygler M. Preparation, characterization and crystallization of an antibody Fab fragment that recognizes RNA. Crystal structures of native Fab and three Fab-mononucleotide complexes. J Mol Biol. 1994 Oct 21;243(2):283–297. doi: 10.1006/jmbi.1994.1654. [DOI] [PubMed] [Google Scholar]
  38. Raben N., Nichols R., Dohlman J., McPhie P., Sridhar V., Hyde C., Leff R., Plotz P. A motif in human histidyl-tRNA synthetase which is shared among several aminoacyl-tRNA synthetases is a coiled-coil that is essential for enzymatic activity and contains the major autoantigenic epitope. J Biol Chem. 1994 Sep 30;269(39):24277–24283. [PubMed] [Google Scholar]
  39. Ramsden D. A., Chen J., Miller F. W., Misener V., Bernstein R. M., Siminovitch K. A., Tsui F. W. Epitope mapping of the cloned human autoantigen, histidyl-tRNA synthetase. Analysis of the myositis-associated anti-Jo-1 autoimmune response. J Immunol. 1989 Oct 1;143(7):2267–2272. [PubMed] [Google Scholar]
  40. Reynaud C., Bruno C., Boullanger P., Grange J., Barbesti S., Niveleau A. Monitoring of urinary excretion of modified nucleosides in cancer patients using a set of six monoclonal antibodies. Cancer Lett. 1992 Jan 31;61(3):255–262. doi: 10.1016/0304-3835(92)90296-8. [DOI] [PubMed] [Google Scholar]
  41. Ripmaster T. L., Shiba K., Schimmel P. Wide cross-species aminoacyl-tRNA synthetase replacement in vivo: yeast cytoplasmic alanine enzyme replaced by human polymyositis serum antigen. Proc Natl Acad Sci U S A. 1995 May 23;92(11):4932–4936. doi: 10.1073/pnas.92.11.4932. [DOI] [PMC free article] [PubMed] [Google Scholar]
  42. Rutjes S. A., Vree Egberts W. T., Jongen P., Van Den Hoogen F., Pruijn G. J., Van Venrooij W. J. Anti-Ro52 antibodies frequently co-occur with anti-Jo-1 antibodies in sera from patients with idiopathic inflammatory myopathy. Clin Exp Immunol. 1997 Jul;109(1):32–40. doi: 10.1046/j.1365-2249.1997.4081308.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  43. Scheit K. H., Holy A. Die Methylierung von Inosin und Uridylyl-(3'-5')inosin durch Dimethylsulfat. Biochim Biophys Acta. 1967 Dec 19;149(2):344–354. [PubMed] [Google Scholar]
  44. Silberklang M., Gillum A. M., RajBhandary U. L. Use of in vitro 32P labeling in the sequence analysis of nonradioactive tRNAs. Methods Enzymol. 1979;59:58–109. doi: 10.1016/0076-6879(79)59072-7. [DOI] [PubMed] [Google Scholar]
  45. Sprague K. U., Hagenbüchle O., Zuniga M. C. The nucleotide sequence of two silk gland alanine tRNAs: implications for fibroin synthesis and for initiator tRNA structure. Cell. 1977 Jul;11(3):561–570. doi: 10.1016/0092-8674(77)90074-5. [DOI] [PubMed] [Google Scholar]
  46. Sprinzl M., Horn C., Brown M., Ioudovitch A., Steinberg S. Compilation of tRNA sequences and sequences of tRNA genes. Nucleic Acids Res. 1998 Jan 1;26(1):148–153. doi: 10.1093/nar/26.1.148. [DOI] [PMC free article] [PubMed] [Google Scholar]
  47. Targoff I. N. Autoantibodies in polymyositis. Rheum Dis Clin North Am. 1992 May;18(2):455–482. [PubMed] [Google Scholar]
  48. Targoff I. N. Immune manifestations of inflammatory muscle disease. Rheum Dis Clin North Am. 1994 Nov;20(4):857–880. [PubMed] [Google Scholar]
  49. Teunissen S. W., Stassen M. H., Pruijn G. J., van Venrooij W. J., Hoet R. M. Characterization of an anti-RNA recombinant autoantibody fragment (scFv) isolated from a phage display library and detailed analysis of its binding site on U1 snRNA. RNA. 1998 Sep;4(9):1124–1133. doi: 10.1017/s1355838298980633. [DOI] [PMC free article] [PubMed] [Google Scholar]
  50. Tsai D. E., Kenan D. J., Keene J. D. In vitro selection of an RNA epitope immunologically cross-reactive with a peptide. Proc Natl Acad Sci U S A. 1992 Oct 1;89(19):8864–8868. doi: 10.1073/pnas.89.19.8864. [DOI] [PMC free article] [PubMed] [Google Scholar]
  51. Vázquez-Abad D., Rothfield N. F. Sensitivity and specificity of anti-Jo-1 antibodies in autoimmune diseases with myositis. Arthritis Rheum. 1996 Feb;39(2):292–296. doi: 10.1002/art.1780390218. [DOI] [PubMed] [Google Scholar]
  52. Westhof E., Dumas P., Moras D. Restrained refinement of two crystalline forms of yeast aspartic acid and phenylalanine transfer RNA crystals. Acta Crystallogr A. 1988 Mar 1;44(Pt 2):112–123. [PubMed] [Google Scholar]
  53. Xue H., Glasser A. L., Desgres J., Grosjean H. Modified nucleotides in Bacillus subtilis tRNA(Trp) hyperexpressed in Escherichia coli. Nucleic Acids Res. 1993 May 25;21(10):2479–2486. doi: 10.1093/nar/21.10.2479. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from RNA are provided here courtesy of The RNA Society

RESOURCES