Abstract
During splicing of nuclear pre-mRNAs, the first step liberates the 5' exon (exon 1) and yields a lariat intron-3'exon (intron-exon 2) intermediate. The second step results in exon ligation. Previous results indicated that severe truncations of the 5' exon of the actin pre-mRNA result in a block to the second splicing step in vitro in yeast extracts, leading to an accumulation of intron-exon 2 lariat intermediates. We show that exogenous exon 1 RNA oligonucleotides can chase these stalled intermediates into lariat intron and spliced exons. This reaction requires some of the cis elements and trans-acting factors that are required for a normal second step. There is no strong sequence requirement for the exon 1 added in trans, but oligonucleotides with complementarity to the U5 snRNA conserved loop perform the chase more efficiently. Using a dominant negative mutant of the DEAH-box ATPase Prp16p and ATP depletion, we show that the stalled intermediate is blocked after the Prp16p-dependent step. These results show that exogenous RNAs with various sequences but containing no splicing signals can be incorporated into spliceosomes and undergo RNA recombination and exon shuffling during the second step of pre-mRNA splicing.
Full Text
The Full Text of this article is available as a PDF (587.6 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Anderson K., Moore M. J. Bimolecular exon ligation by the human spliceosome. Science. 1997 Jun 13;276(5319):1712–1716. doi: 10.1126/science.276.5319.1712. [DOI] [PubMed] [Google Scholar]
- Ansari A., Schwer B. SLU7 and a novel activity, SSF1, act during the PRP16-dependent step of yeast pre-mRNA splicing. EMBO J. 1995 Aug 15;14(16):4001–4009. doi: 10.1002/j.1460-2075.1995.tb00071.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bruzik J. P., Maniatis T. Spliced leader RNAs from lower eukaryotes are trans-spliced in mammalian cells. Nature. 1992 Dec 17;360(6405):692–695. doi: 10.1038/360692a0. [DOI] [PubMed] [Google Scholar]
- Brys A., Schwer B. Requirement for SLU7 in yeast pre-mRNA splicing is dictated by the distance between the branchpoint and the 3' splice site. RNA. 1996 Jul;2(7):707–717. [PMC free article] [PubMed] [Google Scholar]
- Caudevilla C., Serra D., Miliar A., Codony C., Asins G., Bach M., Hegardt F. G. Natural trans-splicing in carnitine octanoyltransferase pre-mRNAs in rat liver. Proc Natl Acad Sci U S A. 1998 Oct 13;95(21):12185–12190. doi: 10.1073/pnas.95.21.12185. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Chanfreau G., Rotondo G., Legrain P., Jacquier A. Processing of a dicistronic small nucleolar RNA precursor by the RNA endonuclease Rnt1. EMBO J. 1998 Jul 1;17(13):3726–3737. doi: 10.1093/emboj/17.13.3726. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Chiara M. D., Reed R. A two-step mechanism for 5' and 3' splice-site pairing. Nature. 1995 Jun 8;375(6531):510–513. doi: 10.1038/375510a0. [DOI] [PubMed] [Google Scholar]
- Duchêne M., Löw A., Schweizer A., Domdey H. Molecular consequences of truncations of the first exon for in vitro splicing of yeast actin pre-mRNA. Nucleic Acids Res. 1988 Aug 11;16(15):7233–7239. doi: 10.1093/nar/16.15.7233. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ghetti A., Abelson J. N. In vitro trans-splicing in Saccharomyces cerevisiae. Proc Natl Acad Sci U S A. 1995 Dec 5;92(25):11461–11464. doi: 10.1073/pnas.92.25.11461. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Horowitz D. S., Abelson J. Stages in the second reaction of pre-mRNA splicing: the final step is ATP independent. Genes Dev. 1993 Feb;7(2):320–329. doi: 10.1101/gad.7.2.320. [DOI] [PubMed] [Google Scholar]
- Hotz H. R., Schwer B. Mutational analysis of the yeast DEAH-box splicing factor Prp16. Genetics. 1998 Jun;149(2):807–815. doi: 10.1093/genetics/149.2.807. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Jacquier A., Michel F. Multiple exon-binding sites in class II self-splicing introns. Cell. 1987 Jul 3;50(1):17–29. doi: 10.1016/0092-8674(87)90658-1. [DOI] [PubMed] [Google Scholar]
- Jestin J. L., Dème E., Jacquier A. Identification of structural elements critical for inter-domain interactions in a group II self-splicing intron. EMBO J. 1997 May 15;16(10):2945–2954. doi: 10.1093/emboj/16.10.2945. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Konarska M. M., Padgett R. A., Sharp P. A. Trans splicing of mRNA precursors in vitro. Cell. 1985 Aug;42(1):165–171. doi: 10.1016/s0092-8674(85)80112-4. [DOI] [PubMed] [Google Scholar]
- Konforti B. B., Konarska M. M. A short 5' splice site RNA oligo can participate in both steps of splicing in mammalian extracts. RNA. 1995 Oct;1(8):815–827. [PMC free article] [PubMed] [Google Scholar]
- Lin R. J., Newman A. J., Cheng S. C., Abelson J. Yeast mRNA splicing in vitro. J Biol Chem. 1985 Nov 25;260(27):14780–14792. [PubMed] [Google Scholar]
- Long M., de Souza S. J., Gilbert W. Evolution of the intron-exon structure of eukaryotic genes. Curr Opin Genet Dev. 1995 Dec;5(6):774–778. doi: 10.1016/0959-437x(95)80010-3. [DOI] [PubMed] [Google Scholar]
- Long M., de Souza S. J., Gilbert W. The yeast splice site revisited: new exon consensus from genomic analysis. Cell. 1997 Dec 12;91(6):739–740. doi: 10.1016/s0092-8674(00)80462-6. [DOI] [PubMed] [Google Scholar]
- Newman A. J., Norman C. U5 snRNA interacts with exon sequences at 5' and 3' splice sites. Cell. 1992 Feb 21;68(4):743–754. doi: 10.1016/0092-8674(92)90149-7. [DOI] [PubMed] [Google Scholar]
- O'Keefe R. T., Newman A. J. Functional analysis of the U5 snRNA loop 1 in the second catalytic step of yeast pre-mRNA splicing. EMBO J. 1998 Jan 15;17(2):565–574. doi: 10.1093/emboj/17.2.565. [DOI] [PMC free article] [PubMed] [Google Scholar]
- O'Keefe R. T., Norman C., Newman A. J. The invariant U5 snRNA loop 1 sequence is dispensable for the first catalytic step of pre-mRNA splicing in yeast. Cell. 1996 Aug 23;86(4):679–689. doi: 10.1016/s0092-8674(00)80140-3. [DOI] [PubMed] [Google Scholar]
- Patthy L. Exon shuffling and other ways of module exchange. Matrix Biol. 1996 Nov;15(5):301–312. doi: 10.1016/s0945-053x(96)90131-6. [DOI] [PubMed] [Google Scholar]
- Schwer B., Guthrie C. A conformational rearrangement in the spliceosome is dependent on PRP16 and ATP hydrolysis. EMBO J. 1992 Dec;11(13):5033–5039. doi: 10.1002/j.1460-2075.1992.tb05610.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Schwer B., Guthrie C. PRP16 is an RNA-dependent ATPase that interacts transiently with the spliceosome. Nature. 1991 Feb 7;349(6309):494–499. doi: 10.1038/349494a0. [DOI] [PubMed] [Google Scholar]
- Sontheimer E. J., Steitz J. A. The U5 and U6 small nuclear RNAs as active site components of the spliceosome. Science. 1993 Dec 24;262(5142):1989–1996. doi: 10.1126/science.8266094. [DOI] [PubMed] [Google Scholar]
- Sontheimer E. J., Steitz J. A. The U5 and U6 small nuclear RNAs as active site components of the spliceosome. Science. 1993 Dec 24;262(5142):1989–1996. doi: 10.1126/science.8266094. [DOI] [PubMed] [Google Scholar]
- Spingola M., Grate L., Haussler D., Ares M., Jr Genome-wide bioinformatic and molecular analysis of introns in Saccharomyces cerevisiae. RNA. 1999 Feb;5(2):221–234. doi: 10.1017/s1355838299981682. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Staley J. P., Guthrie C. Mechanical devices of the spliceosome: motors, clocks, springs, and things. Cell. 1998 Feb 6;92(3):315–326. doi: 10.1016/s0092-8674(00)80925-3. [DOI] [PubMed] [Google Scholar]
- Umen J. G., Guthrie C. A novel role for a U5 snRNP protein in 3' splice site selection. Genes Dev. 1995 Apr 1;9(7):855–868. doi: 10.1101/gad.9.7.855. [DOI] [PubMed] [Google Scholar]
- Umen J. G., Guthrie C. The second catalytic step of pre-mRNA splicing. RNA. 1995 Nov;1(9):869–885. [PMC free article] [PubMed] [Google Scholar]
- Vijayraghavan U., Parker R., Tamm J., Iimura Y., Rossi J., Abelson J., Guthrie C. Mutations in conserved intron sequences affect multiple steps in the yeast splicing pathway, particularly assembly of the spliceosome. EMBO J. 1986 Jul;5(7):1683–1695. doi: 10.1002/j.1460-2075.1986.tb04412.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- de Souza S. J., Long M., Gilbert W. Introns and gene evolution. Genes Cells. 1996 Jun;1(6):493–505. doi: 10.1046/j.1365-2443.1996.d01-264.x. [DOI] [PubMed] [Google Scholar]