Skip to main content
RNA logoLink to RNA
. 1999 Jul;5(7):929–938. doi: 10.1017/s1355838299990015

The yeast retrotransposon Ty5 uses the anticodon stem-loop of the initiator methionine tRNA as a primer for reverse transcription.

N Ke 1, X Gao 1, J B Keeney 1, J D Boeke 1, D F Voytas 1
PMCID: PMC1369817  PMID: 10411136

Abstract

Retrotransposons and retroviruses replicate by reverse transcription of an mRNA intermediate. Most retroelements initiate reverse transcription from a host-encoded tRNA primer. DNA synthesis typically extends from the 3'-OH of the acceptor stem, which is complementary to sequences on the retroelement mRNA (the primer binding site, PBS). However, for some retrotransposons, including the yeast Ty5 elements, sequences in the anticodon stem-loop of the initiator methionine tRNA (IMT) are complementary to the PBS. We took advantage of the genetic tractability of the yeast system to investigate the mechanism of Ty5 priming. We found that transposition frequencies decreased at least 800-fold for mutations in the Ty5 PBS that disrupt complementarity with the IMT. Similarly, transposition was reduced at least 200-fold for IMT mutations in the anticodon stem-loop. Base pairing between the Ty5 PBS and IMT is essential for transposition, as compensatory changes that restored base pairing between the two mutant RNAs restored transposition significantly. An analysis of 12 imt mutants with base changes outside of the region of complementarity failed to identify other tRNA residues important for transposition. In addition, assays carried out with heterologous IMTs from Schizosaccharomyces pombe and Arabidopsis thaliana indicated that residues outside of the anticodon stem-loop have at most a fivefold effect on transposition. Our genetic system should make it possible to further define the components required for priming and to understand the mechanism by which Ty5's novel primer is generated.

Full Text

The Full Text of this article is available as a PDF (238.8 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Aiyar A., Cobrinik D., Ge Z., Kung H. J., Leis J. Interaction between retroviral U5 RNA and the T psi C loop of the tRNA(Trp) primer is required for efficient initiation of reverse transcription. J Virol. 1992 Apr;66(4):2464–2472. doi: 10.1128/jvi.66.4.2464-2472.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Aström S. U., Byström A. S. Rit1, a tRNA backbone-modifying enzyme that mediates initiator and elongator tRNA discrimination. Cell. 1994 Nov 4;79(3):535–546. doi: 10.1016/0092-8674(94)90262-3. [DOI] [PubMed] [Google Scholar]
  3. Basavappa R., Sigler P. B. The 3 A crystal structure of yeast initiator tRNA: functional implications in initiator/elongator discrimination. EMBO J. 1991 Oct;10(10):3105–3111. doi: 10.1002/j.1460-2075.1991.tb07864.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Boeke J. D., Garfinkel D. J., Styles C. A., Fink G. R. Ty elements transpose through an RNA intermediate. Cell. 1985 Mar;40(3):491–500. doi: 10.1016/0092-8674(85)90197-7. [DOI] [PubMed] [Google Scholar]
  5. Boeke J. D., Trueheart J., Natsoulis G., Fink G. R. 5-Fluoroorotic acid as a selective agent in yeast molecular genetics. Methods Enzymol. 1987;154:164–175. doi: 10.1016/0076-6879(87)54076-9. [DOI] [PubMed] [Google Scholar]
  6. Byström A. S., Fink G. R. A functional analysis of the repeated methionine initiator tRNA genes (IMT) in yeast. Mol Gen Genet. 1989 Apr;216(2-3):276–286. doi: 10.1007/BF00334366. [DOI] [PubMed] [Google Scholar]
  7. Cech T. R., Damberger S. H., Gutell R. R. Representation of the secondary and tertiary structure of group I introns. Nat Struct Biol. 1994 May;1(5):273–280. doi: 10.1038/nsb0594-273. [DOI] [PubMed] [Google Scholar]
  8. Chapman K. B., Byström A. S., Boeke J. D. Initiator methionine tRNA is essential for Ty1 transposition in yeast. Proc Natl Acad Sci U S A. 1992 Apr 15;89(8):3236–3240. doi: 10.1073/pnas.89.8.3236. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Chen B., Przybyla A. E. An efficient site-directed mutagenesis method based on PCR. Biotechniques. 1994 Oct;17(4):657–659. [PubMed] [Google Scholar]
  10. Fourcade-Peronnet F., d'Auriol L., Becker J., Galibert F., Best-Belpomme M. Primary structure and functional organization of Drosophila 1731 retrotransposon. Nucleic Acids Res. 1988 Jul 11;16(13):6113–6125. doi: 10.1093/nar/16.13.6113. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Friant S., Heyman T., Byström A. S., Wilhelm M., Wilhelm F. X. Interactions between Ty1 retrotransposon RNA and the T and D regions of the tRNA(iMet) primer are required for initiation of reverse transcription in vivo. Mol Cell Biol. 1998 Feb;18(2):799–806. doi: 10.1128/mcb.18.2.799. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Gabus C., Ficheux D., Rau M., Keith G., Sandmeyer S., Darlix J. L. The yeast Ty3 retrotransposon contains a 5'-3' bipartite primer-binding site and encodes nucleocapsid protein NCp9 functionally homologous to HIV-1 NCp7. EMBO J. 1998 Aug 17;17(16):4873–4880. doi: 10.1093/emboj/17.16.4873. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Gutell R. R. Collection of small subunit (16S- and 16S-like) ribosomal RNA structures: 1994. Nucleic Acids Res. 1994 Sep;22(17):3502–3507. doi: 10.1093/nar/22.17.3502. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Gutell R. R., Gray M. W., Schnare M. N. A compilation of large subunit (23S and 23S-like) ribosomal RNA structures: 1993. Nucleic Acids Res. 1993 Jul 1;21(13):3055–3074. doi: 10.1093/nar/21.13.3055. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Hansen L. J., Chalker D. L., Sandmeyer S. B. Ty3, a yeast retrotransposon associated with tRNA genes, has homology to animal retroviruses. Mol Cell Biol. 1988 Dec;8(12):5245–5256. doi: 10.1128/mcb.8.12.5245. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Ke N., Voytas D. F. High frequency cDNA recombination of the saccharomyces retrotransposon Ty5: The LTR mediates formation of tandem elements. Genetics. 1997 Oct;147(2):545–556. doi: 10.1093/genetics/147.2.545. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Ke N., Voytas D. F. cDNA of the yeast retrotransposon Ty5 preferentially recombines with substrates in silent chromatin. Mol Cell Biol. 1999 Jan;19(1):484–494. doi: 10.1128/mcb.19.1.484. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Keeney J. B., Chapman K. B., Lauermann V., Voytas D. F., Aström S. U., von Pawel-Rammingen U., Byström A., Boeke J. D. Multiple molecular determinants for retrotransposition in a primer tRNA. Mol Cell Biol. 1995 Jan;15(1):217–226. doi: 10.1128/mcb.15.1.217. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Kiesewetter S., Ott G., Sprinzl M. The role of modified purine 64 in initiator/elongator discrimination of tRNA(iMet) from yeast and wheat germ. Nucleic Acids Res. 1990 Aug 25;18(16):4677–4682. doi: 10.1093/nar/18.16.4677. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Kikuchi Y., Ando Y., Shiba T. Unusual priming mechanism of RNA-directed DNA synthesis in copia retrovirus-like particles of Drosophila. 1986 Oct 30-Nov 5Nature. 323(6091):824–826. doi: 10.1038/323824a0. [DOI] [PubMed] [Google Scholar]
  21. Kikuchi Y., Sasaki N., Ando-Yamagami Y. Cleavage of tRNA within the mature tRNA sequence by the catalytic RNA of RNase P: implication for the formation of the primer tRNA fragment for reverse transcription in copia retrovirus-like particles. Proc Natl Acad Sci U S A. 1990 Oct;87(20):8105–8109. doi: 10.1073/pnas.87.20.8105. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Kikuchi Y., Sasaki N. Hyperprocessing of tRNA by the catalytic RNA of RNase P. Cleavage of a natural tRNA within the mature tRNA sequence and evidence for an altered conformation of the substrate tRNA. J Biol Chem. 1992 Jun 15;267(17):11972–11976. [PubMed] [Google Scholar]
  23. Levin H. L. A novel mechanism of self-primed reverse transcription defines a new family of retroelements. Mol Cell Biol. 1995 Jun;15(6):3310–3317. doi: 10.1128/mcb.15.6.3310. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Levin H. L. An unusual mechanism of self-primed reverse transcription requires the RNase H domain of reverse transcriptase to cleave an RNA duplex. Mol Cell Biol. 1996 Oct;16(10):5645–5654. doi: 10.1128/mcb.16.10.5645. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Lin J. H., Levin H. L. A complex structure in the mRNA of Tf1 is recognized and cleaved to generate the primer of reverse transcription. Genes Dev. 1997 Jan 15;11(2):270–285. doi: 10.1101/gad.11.2.270. [DOI] [PubMed] [Google Scholar]
  26. Lindauer A., Fraser D., Brüderlein M., Schmitt R. Reverse transcriptase families and a copia-like retrotransposon, Osser, in the green alga Volvox carteri. FEBS Lett. 1993 Mar 22;319(3):261–266. doi: 10.1016/0014-5793(93)80559-d. [DOI] [PubMed] [Google Scholar]
  27. McCurrach K. J., Rothnie H. M., Hardman N., Glover L. A. Identification of a second retrotransposon-related element in the genome of Physarum polycephalum. Curr Genet. 1990 May;17(5):403–408. doi: 10.1007/BF00334518. [DOI] [PubMed] [Google Scholar]
  28. Rothnie H. M., McCurrach K. J., Glover L. A., Hardman N. Retrotransposon-like nature of Tp1 elements: implications for the organisation of highly repetitive, hypermethylated DNA in the genome of Physarum polycephalum. Nucleic Acids Res. 1991 Jan 25;19(2):279–286. doi: 10.1093/nar/19.2.279. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Tavis J. E., Ganem D. Expression of functional hepatitis B virus polymerase in yeast reveals it to be the sole viral protein required for correct initiation of reverse transcription. Proc Natl Acad Sci U S A. 1993 May 1;90(9):4107–4111. doi: 10.1073/pnas.90.9.4107. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Voytas D. F., Boeke J. D. Yeast retrotransposon revealed. Nature. 1992 Aug 27;358(6389):717–717. doi: 10.1038/358717a0. [DOI] [PubMed] [Google Scholar]
  31. Voytas D. F., Boeke J. D. Yeast retrotransposons and tRNAs. Trends Genet. 1993 Dec;9(12):421–427. doi: 10.1016/0168-9525(93)90105-q. [DOI] [PubMed] [Google Scholar]
  32. Wang G. H., Seeger C. The reverse transcriptase of hepatitis B virus acts as a protein primer for viral DNA synthesis. Cell. 1992 Nov 13;71(4):663–670. doi: 10.1016/0092-8674(92)90599-8. [DOI] [PubMed] [Google Scholar]
  33. Zou S., Ke N., Kim J. M., Voytas D. F. The Saccharomyces retrotransposon Ty5 integrates preferentially into regions of silent chromatin at the telomeres and mating loci. Genes Dev. 1996 Mar 1;10(5):634–645. doi: 10.1101/gad.10.5.634. [DOI] [PubMed] [Google Scholar]
  34. von Pawel-Rammingen U., Aström S., Byström A. S. Mutational analysis of conserved positions potentially important for initiator tRNA function in Saccharomyces cerevisiae. Mol Cell Biol. 1992 Apr;12(4):1432–1442. doi: 10.1128/mcb.12.4.1432. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from RNA are provided here courtesy of The RNA Society

RESOURCES