Abstract
Erm methyltransferases modify bacterial 23S ribosomal RNA at adenosine 2058 (A2058, Escherichia coli numbering) conferring resistance to macrolide, lincosamide, and streptogramin B (MLS) antibiotics. The motif that is recognized by Erm methyltransferases is contained within helix 73 of 23S rRNA and the adjacent single-stranded region around A2058. An RNA transcript of 72 nt that displays this motif functions as an efficient substrate for the ErmE methyltransferase. Pools of degenerate RNAs were formed by doping 34-nt positions that extend over and beyond the putative Erm recognition motif within the 72-mer RNA. The RNAs were passed through a series of rounds of methylation with ErmE. After each round, RNAs were selected that had partially or completely lost their ability to be methylated. After several rounds of methylation/selection, 187 subclones were analyzed. Forty-three of the subclones contained substitutions at single sites, and these are confined to 12 nucleotide positions. These nucleotides, corresponding to A2051-A2060, C2611, and A2614 in 23S rRNA, presumably comprise the RNA recognition motif for ErmE methyltransferase. The structure formed by these nucleotides is highly conserved throughout bacterial rRNAs, and is proposed to constitute the motif that is recognized by all the Erm methyltransferases.
Full Text
The Full Text of this article is available as a PDF (255.9 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Burke D. H., Hoffman D. C., Brown A., Hansen M., Pardi A., Gold L. RNA aptamers to the peptidyl transferase inhibitor chloramphenicol. Chem Biol. 1997 Nov;4(11):833–843. doi: 10.1016/s1074-5521(97)90116-2. [DOI] [PubMed] [Google Scholar]
- Bussiere D. E., Muchmore S. W., Dealwis C. G., Schluckebier G., Nienaber V. L., Edalji R. P., Walter K. A., Ladror U. S., Holzman T. F., Abad-Zapatero C. Crystal structure of ErmC', an rRNA methyltransferase which mediates antibiotic resistance in bacteria. Biochemistry. 1998 May 19;37(20):7103–7112. doi: 10.1021/bi973113c. [DOI] [PubMed] [Google Scholar]
- Dai X., De Mesmaeker A., Joyce G. F. Cleavage of an amide bond by a ribozyme. Science. 1995 Jan 13;267(5195):237–240. doi: 10.1126/science.7809628. [DOI] [PubMed] [Google Scholar]
- Gutell R. R., Gray M. W., Schnare M. N. A compilation of large subunit (23S and 23S-like) ribosomal RNA structures: 1993. Nucleic Acids Res. 1993 Jul 1;21(13):3055–3074. doi: 10.1093/nar/21.13.3055. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Gutell R. R., Larsen N., Woese C. R. Lessons from an evolving rRNA: 16S and 23S rRNA structures from a comparative perspective. Microbiol Rev. 1994 Mar;58(1):10–26. doi: 10.1128/mr.58.1.10-26.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hansen L. H., Vester B., Douthwaite S. Core sequence in the RNA motif recognized by the ErmE methyltransferase revealed by relaxing the fidelity of the enzyme for its target. RNA. 1999 Jan;5(1):93–101. doi: 10.1017/s1355838299981451. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kovalic D., Giannattasio R. B., Jin H. J., Weisblum B. 23S rRNA domain V, a fragment that can be specifically methylated in vitro by the ErmSF (TlrA) methyltransferase. J Bacteriol. 1994 Nov;176(22):6992–6998. doi: 10.1128/jb.176.22.6992-6998.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kovalic D., Giannattasio R. B., Weisblum B. Methylation of minimalist 23S rRNA sequences in vitro by ErmSF (TlrA) N-methyltransferase. Biochemistry. 1995 Dec 5;34(48):15838–15844. doi: 10.1021/bi00048a029. [DOI] [PubMed] [Google Scholar]
- Noller H. F. Structure of ribosomal RNA. Annu Rev Biochem. 1984;53:119–162. doi: 10.1146/annurev.bi.53.070184.001003. [DOI] [PubMed] [Google Scholar]
- Ringquist S., Jones T., Snyder E. E., Gibson T., Boni I., Gold L. High-affinity RNA ligands to Escherichia coli ribosomes and ribosomal protein S1: comparison of natural and unnatural binding sites. Biochemistry. 1995 Mar 21;34(11):3640–3648. doi: 10.1021/bi00011a019. [DOI] [PubMed] [Google Scholar]
- Sanger F., Nicklen S., Coulson A. R. DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci U S A. 1977 Dec;74(12):5463–5467. doi: 10.1073/pnas.74.12.5463. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sigmund C. D., Ettayebi M., Borden A., Morgan E. A. Antibiotic resistance mutations in ribosomal RNA genes of Escherichia coli. Methods Enzymol. 1988;164:673–690. doi: 10.1016/s0076-6879(88)64077-8. [DOI] [PubMed] [Google Scholar]
- Skinner R., Cundliffe E., Schmidt F. J. Site of action of a ribosomal RNA methylase responsible for resistance to erythromycin and other antibiotics. J Biol Chem. 1983 Oct 25;258(20):12702–12706. [PubMed] [Google Scholar]
- Stern S., Moazed D., Noller H. F. Structural analysis of RNA using chemical and enzymatic probing monitored by primer extension. Methods Enzymol. 1988;164:481–489. doi: 10.1016/s0076-6879(88)64064-x. [DOI] [PubMed] [Google Scholar]
- Vester B., Douthwaite S. Domain V of 23S rRNA contains all the structural elements necessary for recognition by the ErmE methyltransferase. J Bacteriol. 1994 Nov;176(22):6999–7004. doi: 10.1128/jb.176.22.6999-7004.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Vester B., Hansen L. H., Douthwaite S. The conformation of 23S rRNA nucleotide A2058 determines its recognition by the ErmE methyltransferase. RNA. 1995 Jul;1(5):501–509. [PMC free article] [PubMed] [Google Scholar]
- Vester B., Nielsen A. K., Hansen L. H., Douthwaite S. ErmE methyltransferase recognition elements in RNA substrates. J Mol Biol. 1998 Sep 18;282(2):255–264. doi: 10.1006/jmbi.1998.2024. [DOI] [PubMed] [Google Scholar]
- Villsen I. D., Vester B., Douthwaite S. ErmE methyltransferase recognizes features of the primary and secondary structure in a motif within domain V of 23 S rRNA. J Mol Biol. 1999 Feb 19;286(2):365–374. doi: 10.1006/jmbi.1998.2504. [DOI] [PubMed] [Google Scholar]
- Weisblum B. Erythromycin resistance by ribosome modification. Antimicrob Agents Chemother. 1995 Mar;39(3):577–585. doi: 10.1128/AAC.39.3.577. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Welch M., Majerfeld I., Yarus M. 23S rRNA similarity from selection for peptidyl transferase mimicry. Biochemistry. 1997 Jun 3;36(22):6614–6623. doi: 10.1021/bi963135j. [DOI] [PubMed] [Google Scholar]
- Wilson C., Szostak J. W. In vitro evolution of a self-alkylating ribozyme. Nature. 1995 Apr 27;374(6525):777–782. doi: 10.1038/374777a0. [DOI] [PubMed] [Google Scholar]
- Yu L., Petros A. M., Schnuchel A., Zhong P., Severin J. M., Walter K., Holzman T. F., Fesik S. W. Solution structure of an rRNA methyltransferase (ErmAM) that confers macrolide-lincosamide-streptogramin antibiotic resistance. Nat Struct Biol. 1997 Jun;4(6):483–489. doi: 10.1038/nsb0697-483. [DOI] [PubMed] [Google Scholar]
- Zalacain M., Cundliffe E. Methylation of 23S rRNA caused by tlrA (ermSF), a tylosin resistance determinant from Streptomyces fradiae. J Bacteriol. 1989 Aug;171(8):4254–4260. doi: 10.1128/jb.171.8.4254-4260.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Zhang B., Cech T. R. Peptide bond formation by in vitro selected ribozymes. Nature. 1997 Nov 6;390(6655):96–100. doi: 10.1038/36375. [DOI] [PubMed] [Google Scholar]
- Zhong P., Pratt S. D., Edalji R. P., Walter K. A., Holzman T. F., Shivakumar A. G., Katz L. Substrate requirements for ErmC' methyltransferase activity. J Bacteriol. 1995 Aug;177(15):4327–4332. doi: 10.1128/jb.177.15.4327-4332.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]