Skip to main content
RNA logoLink to RNA
. 1999 Aug;5(8):1099–1104. doi: 10.1017/s1355838299990738

Identification and characterization of a novel high affinity metal-binding site in the hammerhead ribozyme.

M R Hansen 1, J P Simorre 1, P Hanson 1, V Mokler 1, L Bellon 1, L Beigelman 1, A Pardi 1
PMCID: PMC1369832  PMID: 10445883

Abstract

A novel metal-binding site has been identified in the hammerhead ribozyme by 31P NMR. The metal-binding site is associated with the A13 phosphate in the catalytic core of the hammerhead ribozyme and is distinct from any previously identified metal-binding sites. 31P NMR spectroscopy was used to measure the metal-binding affinity for this site and leads to an apparent dissociation constant of 250-570 microM at 25 degrees C for binding of a single Mg2+ ion. The NMR data also show evidence of a structural change at this site upon metal binding and these results are compared with previous data on metal-induced structural changes in the core of the hammerhead ribozyme. These NMR data were combined with the X-ray structure of the hammerhead ribozyme (Pley HW, Flaherty KM, McKay DB. 1994. Nature 372:68-74) to model RNA ligands involved in binding the metal at this A13 site. In this model, the A13 metal-binding site is structurally similar to the previously identified A(g) metal-binding site and illustrates the symmetrical nature of the tandem G x A base pairs in domain 2 of the hammerhead ribozyme. These results demonstrate that 31P NMR represents an important method for both identification and characterization of metal-binding sites in nucleic acids.

Full Text

The Full Text of this article is available as a PDF (588.3 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Baeyens K. J., De Bondt H. L., Pardi A., Holbrook S. R. A curved RNA helix incorporating an internal loop with G.A and A.A non-Watson-Crick base pairing. Proc Natl Acad Sci U S A. 1996 Nov 12;93(23):12851–12855. doi: 10.1073/pnas.93.23.12851. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Bassi G. S., Murchie A. I., Lilley D. M. The ion-induced folding of the hammerhead ribozyme: core sequence changes that perturb folding into the active conformation. RNA. 1996 Aug;2(8):756–768. [PMC free article] [PubMed] [Google Scholar]
  3. Bassi G. S., Murchie A. I., Walter F., Clegg R. M., Lilley D. M. Ion-induced folding of the hammerhead ribozyme: a fluorescence resonance energy transfer study. EMBO J. 1997 Dec 15;16(24):7481–7489. doi: 10.1093/emboj/16.24.7481. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Bassi G. S., Møllegaard N. E., Murchie A. I., von Kitzing E., Lilley D. M. Ionic interactions and the global conformations of the hammerhead ribozyme. Nat Struct Biol. 1995 Jan;2(1):45–55. doi: 10.1038/nsb0195-45. [DOI] [PubMed] [Google Scholar]
  5. Chartrand P., Leclerc F., Cedergren R. Relating conformation, Mg2+ binding, and functional group modification in the hammerhead ribozyme. RNA. 1997 Jul;3(7):692–696. [PMC free article] [PubMed] [Google Scholar]
  6. Connolly B. A., Eckstein F. Assignment of resonances in the 31P NMR spectrum of d(GGAATTCC) by regiospecific labeling with oxygen-17. Biochemistry. 1984 Nov 6;23(23):5523–5527. doi: 10.1021/bi00318a022. [DOI] [PubMed] [Google Scholar]
  7. Dahm S. C., Derrick W. B., Uhlenbeck O. C. Evidence for the role of solvated metal hydroxide in the hammerhead cleavage mechanism. Biochemistry. 1993 Dec 7;32(48):13040–13045. doi: 10.1021/bi00211a013. [DOI] [PubMed] [Google Scholar]
  8. Dahm S. C., Uhlenbeck O. C. Role of divalent metal ions in the hammerhead RNA cleavage reaction. Biochemistry. 1991 Oct 1;30(39):9464–9469. doi: 10.1021/bi00103a011. [DOI] [PubMed] [Google Scholar]
  9. Feig A. L., Scott W. G., Uhlenbeck O. C. Inhibition of the hammerhead ribozyme cleavage reaction by site-specific binding of Tb. Science. 1998 Jan 2;279(5347):81–84. doi: 10.1126/science.279.5347.81. [DOI] [PubMed] [Google Scholar]
  10. Hermann T., Westhof E. Exploration of metal ion binding sites in RNA folds by Brownian-dynamics simulations. Structure. 1998 Oct 15;6(10):1303–1314. doi: 10.1016/s0969-2126(98)00130-0. [DOI] [PubMed] [Google Scholar]
  11. Horton T. E., Clardy D. R., DeRose V. J. Electron paramagnetic resonance spectroscopic measurement of Mn2+ binding affinities to the hammerhead ribozyme and correlation with cleavage activity. Biochemistry. 1998 Dec 22;37(51):18094–18101. doi: 10.1021/bi981425p. [DOI] [PubMed] [Google Scholar]
  12. Knöll R., Bald R., Fürste J. P. Complete identification of nonbridging phosphate oxygens involved in hammerhead cleavage. RNA. 1997 Feb;3(2):132–140. [PMC free article] [PubMed] [Google Scholar]
  13. Koizumi M., Ohtsuka E. Effects of phosphorothioate and 2-amino groups in hammerhead ribozymes on cleavage rates and Mg2+ binding. Biochemistry. 1991 May 28;30(21):5145–5150. doi: 10.1021/bi00235a005. [DOI] [PubMed] [Google Scholar]
  14. Legault P., Pardi A. 31P chemical shift as a probe of structural motifs in RNA. J Magn Reson B. 1994 Jan;103(1):82–86. doi: 10.1006/jmrb.1994.1012. [DOI] [PubMed] [Google Scholar]
  15. Menger M., Tuschl T., Eckstein F., Porschke D. Mg(2+)-dependent conformational changes in the hammerhead ribozyme. Biochemistry. 1996 Nov 26;35(47):14710–14716. doi: 10.1021/bi960440w. [DOI] [PubMed] [Google Scholar]
  16. Milligan J. F., Groebe D. R., Witherell G. W., Uhlenbeck O. C. Oligoribonucleotide synthesis using T7 RNA polymerase and synthetic DNA templates. Nucleic Acids Res. 1987 Nov 11;15(21):8783–8798. doi: 10.1093/nar/15.21.8783. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Murray J. B., Terwey D. P., Maloney L., Karpeisky A., Usman N., Beigelman L., Scott W. G. The structural basis of hammerhead ribozyme self-cleavage. Cell. 1998 Mar 6;92(5):665–673. doi: 10.1016/s0092-8674(00)81134-4. [DOI] [PubMed] [Google Scholar]
  18. Nikonowicz E. P., Sirr A., Legault P., Jucker F. M., Baer L. M., Pardi A. Preparation of 13C and 15N labelled RNAs for heteronuclear multi-dimensional NMR studies. Nucleic Acids Res. 1992 Sep 11;20(17):4507–4513. doi: 10.1093/nar/20.17.4507. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Ott G., Arnold L., Limmer S. Proton NMR studies of manganese ion binding to tRNA-derived acceptor arm duplexes. Nucleic Acids Res. 1993 Dec 25;21(25):5859–5864. doi: 10.1093/nar/21.25.5859. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Peracchi A., Beigelman L., Scott E. C., Uhlenbeck O. C., Herschlag D. Involvement of a specific metal ion in the transition of the hammerhead ribozyme to its catalytic conformation. J Biol Chem. 1997 Oct 24;272(43):26822–26826. doi: 10.1074/jbc.272.43.26822. [DOI] [PubMed] [Google Scholar]
  21. Pley H. W., Flaherty K. M., McKay D. B. Three-dimensional structure of a hammerhead ribozyme. Nature. 1994 Nov 3;372(6501):68–74. doi: 10.1038/372068a0. [DOI] [PubMed] [Google Scholar]
  22. Pley H. W., Flaherty K. M., McKay D. B. Three-dimensional structure of a hammerhead ribozyme. Nature. 1994 Nov 3;372(6501):68–74. doi: 10.1038/372068a0. [DOI] [PubMed] [Google Scholar]
  23. Ruffner D. E., Uhlenbeck O. C. Thiophosphate interference experiments locate phosphates important for the hammerhead RNA self-cleavage reaction. Nucleic Acids Res. 1990 Oct 25;18(20):6025–6029. doi: 10.1093/nar/18.20.6025. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Scott W. G., Finch J. T., Klug A. The crystal structure of an all-RNA hammerhead ribozyme: a proposed mechanism for RNA catalytic cleavage. Cell. 1995 Jun 30;81(7):991–1002. doi: 10.1016/s0092-8674(05)80004-2. [DOI] [PubMed] [Google Scholar]
  25. Scott W. G., Murray J. B., Arnold J. R., Stoddard B. L., Klug A. Capturing the structure of a catalytic RNA intermediate: the hammerhead ribozyme. Science. 1996 Dec 20;274(5295):2065–2069. doi: 10.1126/science.274.5295.2065. [DOI] [PubMed] [Google Scholar]
  26. Son T. D., Roux M., Ellenberger M. Interaction of Mg2+ ions with nucleoside triphosphates by phosphorus magnetic resonance spectroscopy. Nucleic Acids Res. 1975 Jul;2(7):1101–1110. doi: 10.1093/nar/2.7.1101. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Wincott F. E., Usman N. A practical method for the production of RNA and ribozymes. Methods Mol Biol. 1997;74:59–68. doi: 10.1385/0-89603-389-9:59. [DOI] [PubMed] [Google Scholar]

Articles from RNA are provided here courtesy of The RNA Society

RESOURCES