Skip to main content
RNA logoLink to RNA
. 1999 Aug;5(8):1105–1118. doi: 10.1017/s1355838299982201

Multisite-specific tRNA:m5C-methyltransferase (Trm4) in yeast Saccharomyces cerevisiae: identification of the gene and substrate specificity of the enzyme.

Y Motorin 1, H Grosjean 1
PMCID: PMC1369833  PMID: 10445884

Abstract

Several genes encoding putative RNA:5-methylcytidine-transferases (m5C-transferases) from different organisms, including yeast, have been identified by sequence homology with the recently identified 16S rRNA:m5C967-methyltransferase (gene SUN) from Escherichia coli. One of the yeast ORFs (YBL024w) was amplified by PCR, inserted in the expression vector pET28b, and the corresponding protein was hyperexpressed in E. coli BL21 (DE3). The resulting N-terminally His6-tagged recombinant Ybl024p was purified to apparent homogeneity by one-step affinity chromatography on Ni2+-NTA-agarose column. The activity and substrate specificity of the purified Ybl024p were tested in vitro using T7 transcripts of different yeast tRNAs as substrates and S-adenosyl-L-methionine as a donor of the methyl groups. The results indicate that yeast ORF YBL024w encodes S-adenosyl-L-methionine-dependent tRNA: m5C-methyltransferase that is capable of methylating cytosine to m5C at several positions in different yeast tRNAs and pre-tRNAs containing intron. Modification of tRNA occurs at all four positions (34, 40, 48, and 49) at which m5C has been found in yeast tRNAs sequenced so far. Disruption of the ORF YBL024w leads to the complete absence of m5C in total yeast tRNA. Moreover no tRNA:m5C-methyltransferase activity towards all potential m5C methylation sites was detected in the extract of the disrupted yeast strain. These results demonstrate that the protein product of a single gene is responsible for complete m5C methylation of yeast tRNA. Because this newly characterized multisite-specific modification enzyme Ybl024p is the fourth tRNA-specific methyltransferase identified in yeast, we suggest designating it as TRM4, the gene corresponding to ORF YBL024w.

Full Text

The Full Text of this article is available as a PDF (975.8 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Adams R. L. Eukaryotic DNA methyltransferases--structure and function. Bioessays. 1995 Feb;17(2):139–145. doi: 10.1002/bies.950170209. [DOI] [PubMed] [Google Scholar]
  2. Agris P. F. The importance of being modified: roles of modified nucleosides and Mg2+ in RNA structure and function. Prog Nucleic Acid Res Mol Biol. 1996;53:79–129. doi: 10.1016/s0079-6603(08)60143-9. [DOI] [PubMed] [Google Scholar]
  3. Auxilien S., Crain P. F., Trewyn R. W., Grosjean H. Mechanism, specificity and general properties of the yeast enzyme catalysing the formation of inosine 34 in the anticodon of transfer RNA. J Mol Biol. 1996 Oct 4;262(4):437–458. doi: 10.1006/jmbi.1996.0527. [DOI] [PubMed] [Google Scholar]
  4. Basti M. M., Stuart J. W., Lam A. T., Guenther R., Agris P. F. Design, biological activity and NMR-solution structure of a DNA analogue of yeast tRNA(Phe) anticodon domain. Nat Struct Biol. 1996 Jan;3(1):38–44. doi: 10.1038/nsb0196-38. [DOI] [PubMed] [Google Scholar]
  5. Becker H. F., Motorin Y., Planta R. J., Grosjean H. The yeast gene YNL292w encodes a pseudouridine synthase (Pus4) catalyzing the formation of psi55 in both mitochondrial and cytoplasmic tRNAs. Nucleic Acids Res. 1997 Nov 15;25(22):4493–4499. doi: 10.1093/nar/25.22.4493. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Becker H. F., Motorin Y., Sissler M., Florentz C., Grosjean H. Major identity determinants for enzymatic formation of ribothymidine and pseudouridine in the T psi-loop of yeast tRNAs. J Mol Biol. 1997 Dec 12;274(4):505–518. doi: 10.1006/jmbi.1997.1417. [DOI] [PubMed] [Google Scholar]
  7. Brulé H., Grosjean H., Giegé R., Florentz C. A pseudoknotted tRNA variant is a substrate for tRNA (cytosine-5)-methyltransferase from Xenopus laevis. Biochimie. 1998 Dec;80(12):977–985. doi: 10.1016/s0300-9084(99)80003-0. [DOI] [PubMed] [Google Scholar]
  8. Cavaillé J., Chetouani F., Bachellerie J. P. The yeast Saccharomyces cerevisiae YDL112w ORF encodes the putative 2'-O-ribose methyltransferase catalyzing the formation of Gm18 in tRNAs. RNA. 1999 Jan;5(1):66–81. doi: 10.1017/s1355838299981475. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Chen Y., Sierzputowska-Gracz H., Guenther R., Everett K., Agris P. F. 5-Methylcytidine is required for cooperative binding of Mg2+ and a conformational transition at the anticodon stem-loop of yeast phenylalanine tRNA. Biochemistry. 1993 Sep 28;32(38):10249–10253. doi: 10.1021/bi00089a047. [DOI] [PubMed] [Google Scholar]
  10. Cheng X., Blumenthal R. M. Finding a basis for flipping bases. Structure. 1996 Jun 15;4(6):639–645. doi: 10.1016/s0969-2126(96)00068-8. [DOI] [PubMed] [Google Scholar]
  11. Cheng X., Kumar S., Posfai J., Pflugrath J. W., Roberts R. J. Crystal structure of the HhaI DNA methyltransferase complexed with S-adenosyl-L-methionine. Cell. 1993 Jul 30;74(2):299–307. doi: 10.1016/0092-8674(93)90421-l. [DOI] [PubMed] [Google Scholar]
  12. Cheng X. Structure and function of DNA methyltransferases. Annu Rev Biophys Biomol Struct. 1995;24:293–318. doi: 10.1146/annurev.bb.24.060195.001453. [DOI] [PubMed] [Google Scholar]
  13. Conrad J., Sun D., Englund N., Ofengand J. The rluC gene of Escherichia coli codes for a pseudouridine synthase that is solely responsible for synthesis of pseudouridine at positions 955, 2504, and 2580 in 23 S ribosomal RNA. J Biol Chem. 1998 Jul 17;273(29):18562–18566. doi: 10.1074/jbc.273.29.18562. [DOI] [PubMed] [Google Scholar]
  14. Constantinesco F., Benachenhou N., Motorin Y., Grosjean H. The tRNA(guanine-26,N2-N2) methyltransferase (Trm1) from the hyperthermophilic archaeon Pyrococcus furiosus: cloning, sequencing of the gene and its expression in Escherichia coli. Nucleic Acids Res. 1998 Aug 15;26(16):3753–3761. doi: 10.1093/nar/26.16.3753. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Grosjean H., Edqvist J., Stråby K. B., Giegé R. Enzymatic formation of modified nucleosides in tRNA: dependence on tRNA architecture. J Mol Biol. 1996 Jan 12;255(1):67–85. doi: 10.1006/jmbi.1996.0007. [DOI] [PubMed] [Google Scholar]
  16. Grosjean H., Szweykowska-Kulinska Z., Motorin Y., Fasiolo F., Simos G. Intron-dependent enzymatic formation of modified nucleosides in eukaryotic tRNAs: a review. Biochimie. 1997 May;79(5):293–302. doi: 10.1016/s0300-9084(97)83517-1. [DOI] [PubMed] [Google Scholar]
  17. Gupta R. Halobacterium volcanii tRNAs. Identification of 41 tRNAs covering all amino acids, and the sequences of 33 class I tRNAs. J Biol Chem. 1984 Aug 10;259(15):9461–9471. [PubMed] [Google Scholar]
  18. Himeno H., Yoshida S., Soma A., Nishikawa K. Only one nucleotide insertion to the long variable arm confers an efficient serine acceptor activity upon Saccharomyces cerevisiae tRNA(Leu) in vitro. J Mol Biol. 1997 May 16;268(4):704–711. doi: 10.1006/jmbi.1997.0991. [DOI] [PubMed] [Google Scholar]
  19. Hong B., Brockenbrough J. S., Wu P., Aris J. P. Nop2p is required for pre-rRNA processing and 60S ribosome subunit synthesis in yeast. Mol Cell Biol. 1997 Jan;17(1):378–388. doi: 10.1128/mcb.17.1.378. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Jiang H. Q., Motorin Y., Jin Y. X., Grosjean H. Pleiotropic effects of intron removal on base modification pattern of yeast tRNAPhe: an in vitro study. Nucleic Acids Res. 1997 Jul 15;25(14):2694–2701. doi: 10.1093/nar/25.14.2694. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Kagan R. M., Clarke S. Widespread occurrence of three sequence motifs in diverse S-adenosylmethionine-dependent methyltransferases suggests a common structure for these enzymes. Arch Biochem Biophys. 1994 May 1;310(2):417–427. doi: 10.1006/abbi.1994.1187. [DOI] [PubMed] [Google Scholar]
  22. Keith G. Mobilities of modified ribonucleotides on two-dimensional cellulose thin-layer chromatography. Biochimie. 1995;77(1-2):142–144. doi: 10.1016/0300-9084(96)88118-1. [DOI] [PubMed] [Google Scholar]
  23. Keith J. M., Winters E. M., Moss B. Purification and characterization of a HeLa cell transfer RNA(cytosine-5-)-methyltransferase. J Biol Chem. 1980 May 25;255(10):4636–4644. [PubMed] [Google Scholar]
  24. King M., Ton D., Redman K. L. A conserved motif in the yeast nucleolar protein Nop2p contains an essential cysteine residue. Biochem J. 1999 Jan 1;337(Pt 1):29–35. [PMC free article] [PubMed] [Google Scholar]
  25. Klimasauskas S., Kumar S., Roberts R. J., Cheng X. HhaI methyltransferase flips its target base out of the DNA helix. Cell. 1994 Jan 28;76(2):357–369. doi: 10.1016/0092-8674(94)90342-5. [DOI] [PubMed] [Google Scholar]
  26. Klootwijk J., Planta R. J. Analysis of the methylation sites in yeast ribosomal RNA. Eur J Biochem. 1973 Nov 15;39(2):325–333. doi: 10.1111/j.1432-1033.1973.tb03130.x. [DOI] [PubMed] [Google Scholar]
  27. Koonin E. V. Prediction of an rRNA methyltransferase domain in human tumor-specific nucleolar protein P120. Nucleic Acids Res. 1994 Jul 11;22(13):2476–2478. doi: 10.1093/nar/22.13.2476. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Koonin E. V., Tatusov R. L., Rudd K. E. Protein sequence comparison at genome scale. Methods Enzymol. 1996;266:295–322. doi: 10.1016/s0076-6879(96)66020-0. [DOI] [PubMed] [Google Scholar]
  29. Koonin E. V., Tatusov R. L., Rudd K. E. Sequence similarity analysis of Escherichia coli proteins: functional and evolutionary implications. Proc Natl Acad Sci U S A. 1995 Dec 5;92(25):11921–11925. doi: 10.1073/pnas.92.25.11921. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
  31. Lafontaine D. L., Bousquet-Antonelli C., Henry Y., Caizergues-Ferrer M., Tollervey D. The box H + ACA snoRNAs carry Cbf5p, the putative rRNA pseudouridine synthase. Genes Dev. 1998 Feb 15;12(4):527–537. doi: 10.1101/gad.12.4.527. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Lafontaine D., Vandenhaute J., Tollervey D. The 18S rRNA dimethylase Dim1p is required for pre-ribosomal RNA processing in yeast. Genes Dev. 1995 Oct 15;9(20):2470–2481. doi: 10.1101/gad.9.20.2470. [DOI] [PubMed] [Google Scholar]
  33. Lam A. T., Guenther R., Agris P. F. Modified nucleoside-dependent transition metal binding to DNA analogs of the tRNA anticodon stem/loop domain. Biometals. 1995 Oct;8(4):290–296. doi: 10.1007/BF00141601. [DOI] [PubMed] [Google Scholar]
  34. Lawrence C. E., Altschul S. F., Boguski M. S., Liu J. S., Neuwald A. F., Wootton J. C. Detecting subtle sequence signals: a Gibbs sampling strategy for multiple alignment. Science. 1993 Oct 8;262(5131):208–214. doi: 10.1126/science.8211139. [DOI] [PubMed] [Google Scholar]
  35. Lecointe F., Simos G., Sauer A., Hurt E. C., Motorin Y., Grosjean H. Characterization of yeast protein Deg1 as pseudouridine synthase (Pus3) catalyzing the formation of psi 38 and psi 39 in tRNA anticodon loop. J Biol Chem. 1998 Jan 16;273(3):1316–1323. doi: 10.1074/jbc.273.3.1316. [DOI] [PubMed] [Google Scholar]
  36. Maden B. E. Locations of methyl groups in 28 S rRNA of Xenopus laevis and man. Clustering in the conserved core of molecule. J Mol Biol. 1988 May 20;201(2):289–314. doi: 10.1016/0022-2836(88)90139-8. [DOI] [PubMed] [Google Scholar]
  37. Malone T., Blumenthal R. M., Cheng X. Structure-guided analysis reveals nine sequence motifs conserved among DNA amino-methyltransferases, and suggests a catalytic mechanism for these enzymes. J Mol Biol. 1995 Nov 3;253(4):618–632. doi: 10.1006/jmbi.1995.0577. [DOI] [PubMed] [Google Scholar]
  38. Massenet S., Motorin Y., Lafontaine D. L., Hurt E. C., Grosjean H., Branlant C. Pseudouridine mapping in the Saccharomyces cerevisiae spliceosomal U small nuclear RNAs (snRNAs) reveals that pseudouridine synthase pus1p exhibits a dual substrate specificity for U2 snRNA and tRNA. Mol Cell Biol. 1999 Mar;19(3):2142–2154. doi: 10.1128/mcb.19.3.2142. [DOI] [PMC free article] [PubMed] [Google Scholar]
  39. Motorin Y., Keith G., Simon C., Foiret D., Simos G., Hurt E., Grosjean H. The yeast tRNA:pseudouridine synthase Pus1p displays a multisite substrate specificity. RNA. 1998 Jul;4(7):856–869. doi: 10.1017/s1355838298980396. [DOI] [PMC free article] [PubMed] [Google Scholar]
  40. Motorin Y., Le Caer J. P., Waller J. P. Cysteinyl-tRNA synthetase from Saccharomyces cerevisiae. Purification, characterization and assignment to the genomic sequence YNL247w. Biochimie. 1997 Dec;79(12):731–740. doi: 10.1016/s0300-9084(97)86931-3. [DOI] [PubMed] [Google Scholar]
  41. Munns T. W., Sims H. F. Methylation and processing of transfer ribonucleic acid in mammalian and bacterial cells. J Biol Chem. 1975 Mar 25;250(6):2143–2149. [PubMed] [Google Scholar]
  42. Nishikura K., Kurjan J., Hall B. D., De Robertis E. M. Genetic analysis of the processing of a spliced tRNA. EMBO J. 1982;1(2):263–268. doi: 10.1002/j.1460-2075.1982.tb01157.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  43. Noller H. F. Structure of ribosomal RNA. Annu Rev Biochem. 1984;53:119–162. doi: 10.1146/annurev.bi.53.070184.001003. [DOI] [PubMed] [Google Scholar]
  44. Noon K. R., Bruenger E., McCloskey J. A. Posttranscriptional modifications in 16S and 23S rRNAs of the archaeal hyperthermophile Sulfolobus solfataricus. J Bacteriol. 1998 Jun;180(11):2883–2888. doi: 10.1128/jb.180.11.2883-2888.1998. [DOI] [PMC free article] [PubMed] [Google Scholar]
  45. O'Gara M., McCloy K., Malone T., Cheng X. Structure-based sequence alignment of three AdoMet-dependent DNA methyltransferases. Gene. 1995 May 19;157(1-2):135–138. doi: 10.1016/0378-1119(94)00669-j. [DOI] [PubMed] [Google Scholar]
  46. Obara M., Hirano H., Higashi K. Purification and characterization of nucleolar ribonucleic acid methylase from Ehrlich ascites tumor cells of mice. Biochemistry. 1982 Mar 16;21(6):1374–1380. doi: 10.1021/bi00535a042. [DOI] [PubMed] [Google Scholar]
  47. Perret V., Garcia A., Puglisi J., Grosjean H., Ebel J. P., Florentz C., Giegé R. Conformation in solution of yeast tRNA(Asp) transcripts deprived of modified nucleotides. Biochimie. 1990 Oct;72(10):735–743. doi: 10.1016/0300-9084(90)90158-d. [DOI] [PubMed] [Google Scholar]
  48. Pósfai J., Bhagwat A. S., Pósfai G., Roberts R. J. Predictive motifs derived from cytosine methyltransferases. Nucleic Acids Res. 1989 Apr 11;17(7):2421–2435. doi: 10.1093/nar/17.7.2421. [DOI] [PMC free article] [PubMed] [Google Scholar]
  49. Reyes V. M., Abelson J. N. In vitro synthesis of end-mature, intron-containing transfer RNAs. Methods Enzymol. 1989;180:63–69. doi: 10.1016/0076-6879(89)80092-8. [DOI] [PubMed] [Google Scholar]
  50. Sampson J. R., DiRenzo A. B., Behlen L. S., Uhlenbeck O. C. Role of the tertiary nucleotides in the interaction of yeast phenylalanine tRNA with its cognate synthetase. Biochemistry. 1990 Mar 13;29(10):2523–2532. doi: 10.1021/bi00462a014. [DOI] [PubMed] [Google Scholar]
  51. Saxena P., Walker J. R. Expression of argU, the Escherichia coli gene coding for a rare arginine tRNA. J Bacteriol. 1992 Mar;174(6):1956–1964. doi: 10.1128/jb.174.6.1956-1964.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  52. Simos G., Tekotte H., Grosjean H., Segref A., Sharma K., Tollervey D., Hurt E. C. Nuclear pore proteins are involved in the biogenesis of functional tRNA. EMBO J. 1996 May 1;15(9):2270–2284. [PMC free article] [PubMed] [Google Scholar]
  53. Smith J. E., Cooperman B. S., Mitchell P. Methylation sites in Escherichia coli ribosomal RNA: localization and identification of four new sites of methylation in 23S rRNA. Biochemistry. 1992 Nov 10;31(44):10825–10834. doi: 10.1021/bi00159a025. [DOI] [PubMed] [Google Scholar]
  54. Sprinzl M., Horn C., Brown M., Ioudovitch A., Steinberg S. Compilation of tRNA sequences and sequences of tRNA genes. Nucleic Acids Res. 1998 Jan 1;26(1):148–153. doi: 10.1093/nar/26.1.148. [DOI] [PMC free article] [PubMed] [Google Scholar]
  55. Strobel M. C., Abelson J. Effect of intron mutations on processing and function of Saccharomyces cerevisiae SUP53 tRNA in vitro and in vivo. Mol Cell Biol. 1986 Jul;6(7):2663–2673. doi: 10.1128/mcb.6.7.2663. [DOI] [PMC free article] [PubMed] [Google Scholar]
  56. Szweykowska-Kulinska Z., Senger B., Keith G., Fasiolo F., Grosjean H. Intron-dependent formation of pseudouridines in the anticodon of Saccharomyces cerevisiae minor tRNA(Ile). EMBO J. 1994 Oct 3;13(19):4636–4644. doi: 10.1002/j.1460-2075.1994.tb06786.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  57. Thompson J. D., Higgins D. G., Gibson T. J. CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res. 1994 Nov 11;22(22):4673–4680. doi: 10.1093/nar/22.22.4673. [DOI] [PMC free article] [PubMed] [Google Scholar]
  58. Tscherne J. S., Nurse K., Popienick P., Michel H., Sochacki M., Ofengand J. Purification, cloning, and characterization of the 16S RNA m5C967 methyltransferase from Escherichia coli. Biochemistry. 1999 Feb 9;38(6):1884–1892. doi: 10.1021/bi981880l. [DOI] [PubMed] [Google Scholar]
  59. Wach A., Brachat A., Pöhlmann R., Philippsen P. New heterologous modules for classical or PCR-based gene disruptions in Saccharomyces cerevisiae. Yeast. 1994 Dec;10(13):1793–1808. doi: 10.1002/yea.320101310. [DOI] [PubMed] [Google Scholar]
  60. Wierzbicka H., Jakubowski H., Pawelkiewicz Transfer RNA methyltransferases from yellow lupin seeds: purification and properties. Nucleic Acids Res. 1975 Jan;2(1):101–111. doi: 10.1093/nar/2.1.101. [DOI] [PMC free article] [PubMed] [Google Scholar]
  61. Wu J. C., Santi D. V. Kinetic and catalytic mechanism of HhaI methyltransferase. J Biol Chem. 1987 Apr 5;262(10):4778–4786. [PubMed] [Google Scholar]
  62. Wu P., Brockenbrough J. S., Paddy M. R., Aris J. P. NCL1, a novel gene for a non-essential nuclear protein in Saccharomyces cerevisiae. Gene. 1998 Oct 5;220(1-2):109–117. doi: 10.1016/s0378-1119(98)00330-8. [DOI] [PubMed] [Google Scholar]
  63. de Beus E., Brockenbrough J. S., Hong B., Aris J. P. Yeast NOP2 encodes an essential nucleolar protein with homology to a human proliferation marker. J Cell Biol. 1994 Dec;127(6 Pt 2):1799–1813. doi: 10.1083/jcb.127.6.1799. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from RNA are provided here courtesy of The RNA Society

RESOURCES