Abstract
Binding of transfer RNA (tRNA) to the ribosome involves crucial tRNA-ribosomal RNA (rRNA) interactions. To better understand these interactions, U33-substituted yeast tRNA(Phe) anticodon stem and loop domains (ASLs) were used as probes of anticodon orientation on the ribosome. Orientation of the anticodon in the ribosomal P-site was assessed with a quantitative chemical footprinting method in which protection constants (Kp) quantify protection afforded to individual 16S rRNA P-site nucleosides by tRNA or synthetic ASLs. Chemical footprints of native yeast tRNA(Phe), ASL-U33, as well as ASLs containing 3-methyluridine, cytidine, or deoxyuridine at position 33 (ASL-m3U33, ASL-C33, and ASL-dU33, respectively) were compared. Yeast tRNAPhe and the ASL-U33 protected individual 16S rRNA P-site nucleosides differentially. Ribosomal binding of yeast tRNA(Phe) enhanced protection of C1400, but the ASL-U33 and U33-substituted ASLs did not. Two residues, G926 and G1338 with KpS approximately 50-60 nM, were afforded significantly greater protection by both yeast tRNA(Phe) and the ASL-U33 than other residues, such as A532, A794, C795, and A1339 (KpS approximately 100-200 nM). In contrast, protections of G926 and G1338 were greatly and differentially reduced in quantitative footprints of U33-substituted ASLs as compared with that of the ASL-U33. ASL-m3U33 and ASL-C33 protected G530, A532, A794, C795, and A1339 as well as the ASL-U33. However, protection of G926 and G1338 (KpS between 70 and 340 nM) was significantly reduced in comparison to that of the ASL-U33 (43 and 61 nM, respectively). Though protections of all P-site nucleosides by ASL-dU33 were reduced as compared to that of the ASL-U33, a proportionally greater reduction of G926 and G1338 protections was observed (KpS = 242 and 347 nM, respectively). Thus, G926 and G1338 are important to efficient P-site binding of tRNA. More importantly, when tRNA is bound in the ribosomal P-site, G926 and G1338 of 16S rRNA and the invariant U33 of tRNA are positioned close to each other.
Full Text
The Full Text of this article is available as a PDF (499.0 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Agris P. F., Malkiewicz A., Kraszewski A., Everett K., Nawrot B., Sochacka E., Jankowska J., Guenther R. Site-selected introduction of modified purine and pyrimidine ribonucleosides into RNA by automated phosphoramidite chemistry. Biochimie. 1995;77(1-2):125–134. doi: 10.1016/0300-9084(96)88115-6. [DOI] [PubMed] [Google Scholar]
- Ashraf S. S., Ansari G., Guenther R., Sochacka E., Malkiewicz A., Agris P. F. The uridine in "U-turn": contributions to tRNA-ribosomal binding. RNA. 1999 Apr;5(4):503–511. doi: 10.1017/s1355838299981931. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Banerjee A. R., Turner D. H. The time dependence of chemical modification reveals slow steps in the folding of a group I ribozyme. Biochemistry. 1995 May 16;34(19):6504–6512. doi: 10.1021/bi00019a031. [DOI] [PubMed] [Google Scholar]
- Barta A., Steiner G., Brosius J., Noller H. F., Kuechler E. Identification of a site on 23S ribosomal RNA located at the peptidyl transferase center. Proc Natl Acad Sci U S A. 1984 Jun;81(12):3607–3611. doi: 10.1073/pnas.81.12.3607. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Brenowitz M., Senear D. F., Shea M. A., Ackers G. K. "Footprint" titrations yield valid thermodynamic isotherms. Proc Natl Acad Sci U S A. 1986 Nov;83(22):8462–8466. doi: 10.1073/pnas.83.22.8462. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Döring T., Mitchell P., Osswald M., Bochkariov D., Brimacombe R. The decoding region of 16S RNA; a cross-linking study of the ribosomal A, P and E sites using tRNA derivatized at position 32 in the anticodon loop. EMBO J. 1994 Jun 1;13(11):2677–2685. doi: 10.1002/j.1460-2075.1994.tb06558.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ericson G., Minchew P., Wollenzien P. Structural changes in base-paired region 28 in 16 S rRNA close to the decoding region of the 30 S ribosomal subunit are correlated to changes in tRNA binding. J Mol Biol. 1995 Jul 21;250(4):407–419. doi: 10.1006/jmbi.1995.0386. [DOI] [PubMed] [Google Scholar]
- Green R., Samaha R. R., Noller H. F. Mutations at nucleotides G2251 and U2585 of 23 S rRNA perturb the peptidyl transferase center of the ribosome. J Mol Biol. 1997 Feb 14;266(1):40–50. doi: 10.1006/jmbi.1996.0780. [DOI] [PubMed] [Google Scholar]
- Hüttenhofer A., Noller H. F. Hydroxyl radical cleavage of tRNA in the ribosomal P site. Proc Natl Acad Sci U S A. 1992 Sep 1;89(17):7851–7855. doi: 10.1073/pnas.89.17.7851. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Moazed D., Noller H. F. Binding of tRNA to the ribosomal A and P sites protects two distinct sets of nucleotides in 16 S rRNA. J Mol Biol. 1990 Jan 5;211(1):135–145. doi: 10.1016/0022-2836(90)90016-F. [DOI] [PubMed] [Google Scholar]
- Moazed D., Noller H. F. Transfer RNA shields specific nucleotides in 16S ribosomal RNA from attack by chemical probes. Cell. 1986 Dec 26;47(6):985–994. doi: 10.1016/0092-8674(86)90813-5. [DOI] [PubMed] [Google Scholar]
- Noller H. F., Hoffarth V., Zimniak L. Unusual resistance of peptidyl transferase to protein extraction procedures. Science. 1992 Jun 5;256(5062):1416–1419. doi: 10.1126/science.1604315. [DOI] [PubMed] [Google Scholar]
- Noller H. F. tRNA-rRNA interactions and peptidyl transferase. FASEB J. 1993 Jan;7(1):87–89. doi: 10.1096/fasebj.7.1.8422979. [DOI] [PubMed] [Google Scholar]
- Osswald M., Döring T., Brimacombe R. The ribosomal neighbourhood of the central fold of tRNA: cross-links from position 47 of tRNA located at the A, P or E site. Nucleic Acids Res. 1995 Nov 25;23(22):4635–4641. doi: 10.1093/nar/23.22.4635. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Petri V., Brenowitz M. Quantitative nucleic acids footprinting: thermodynamic and kinetic approaches. Curr Opin Biotechnol. 1997 Feb;8(1):36–44. doi: 10.1016/s0958-1669(97)80155-3. [DOI] [PubMed] [Google Scholar]
- Podkowiński J., Górnicki P. Ribosomal proteins S7 and L1 are located close to the decoding site of E. coli ribosome--affinity labeling studies with modified tRNAs carrying photoreactive probes attached adjacent to the 3'-end of the anticodon. Nucleic Acids Res. 1989 Nov 11;17(21):8767–8782. doi: 10.1093/nar/17.21.8767. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Prince J. B., Taylor B. H., Thurlow D. L., Ofengand J., Zimmermann R. A. Covalent crosslinking of tRNA1Val to 16S RNA at the ribosomal P site: identification of crosslinked residues. Proc Natl Acad Sci U S A. 1982 Sep;79(18):5450–5454. doi: 10.1073/pnas.79.18.5450. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Rose S. J., 3rd, Lowary P. T., Uhlenbeck O. C. Binding of yeast tRNAPhe anticodon arm to Escherichia coli 30 S ribosomes. J Mol Biol. 1983 Jun 15;167(1):103–117. doi: 10.1016/s0022-2836(83)80036-9. [DOI] [PubMed] [Google Scholar]
- Sclavi B., Sullivan M., Chance M. R., Brenowitz M., Woodson S. A. RNA folding at millisecond intervals by synchrotron hydroxyl radical footprinting. Science. 1998 Mar 20;279(5358):1940–1943. doi: 10.1126/science.279.5358.1940. [DOI] [PubMed] [Google Scholar]
- Sergiev P. V., Lavrik I. N., Wlasoff V. A., Dokudovskaya S. S., Dontsova O. A., Bogdanov A. A., Brimacombe R. The path of mRNA through the bacterial ribosome: a site-directed crosslinking study using new photoreactive derivatives of guanosine and uridine. RNA. 1997 May;3(5):464–475. [PMC free article] [PubMed] [Google Scholar]
- Wallis M. G., von Ahsen U., Schroeder R., Famulok M. A novel RNA motif for neomycin recognition. Chem Biol. 1995 Aug;2(8):543–552. doi: 10.1016/1074-5521(95)90188-4. [DOI] [PubMed] [Google Scholar]
- Woodson S. A., Leontis N. B. Structure and dynamics of ribosomal RNA. Curr Opin Struct Biol. 1998 Jun;8(3):294–300. doi: 10.1016/s0959-440x(98)80061-4. [DOI] [PubMed] [Google Scholar]
- von Ahsen U., Green R., Schroeder R., Noller H. F. Identification of 2'-hydroxyl groups required for interaction of a tRNA anticodon stem-loop region with the ribosome. RNA. 1997 Jan;3(1):49–56. [PMC free article] [PubMed] [Google Scholar]
- von Ahsen U., Noller H. F. Identification of bases in 16S rRNA essential for tRNA binding at the 30S ribosomal P site. Science. 1995 Jan 13;267(5195):234–237. doi: 10.1126/science.7528943. [DOI] [PubMed] [Google Scholar]
