Skip to main content
RNA logoLink to RNA
. 1999 Sep;5(9):1268–1272. doi: 10.1017/s1355838299991033

A simple and efficient method to reduce nontemplated nucleotide addition at the 3 terminus of RNAs transcribed by T7 RNA polymerase.

C Kao 1, M Zheng 1, S Rüdisser 1
PMCID: PMC1369849  PMID: 10496227

Abstract

DNA templates modified with C2'-methoxyls at the last two nucleotides of the 5' termini dramatically reduced nontemplated nucleotide addition by the T7 RNA polymerase from both single- and double-stranded DNA templates. This strategy was used to generate several different transcripts. Two of the transcripts were demonstrated by nuclear magnetic resonance spectroscopy to be unaffected in their sequence. Transcripts produced from the modified templates can be purified with greater ease and should be useful in a number of applications.

Full Text

The Full Text of this article is available as a PDF (356.1 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Dzianott A. M., Bujarski J. J. An in vitro transcription vector which generates nearly correctly ended RNAs by self-cleavage of longer transcripts. Nucleic Acids Res. 1988 Nov 25;16(22):10940–10940. doi: 10.1093/nar/16.22.10940. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Gardner L. P., Mookhtiar K. A., Coleman J. E. Initiation, elongation, and processivity of carboxyl-terminal mutants of T7 RNA polymerase. Biochemistry. 1997 Mar 11;36(10):2908–2918. doi: 10.1021/bi962397i. [DOI] [PubMed] [Google Scholar]
  3. Grodberg J., Dunn J. J. ompT encodes the Escherichia coli outer membrane protease that cleaves T7 RNA polymerase during purification. J Bacteriol. 1988 Mar;170(3):1245–1253. doi: 10.1128/jb.170.3.1245-1253.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Helm M., Brulé H., Giegé R., Florentz C. More mistakes by T7 RNA polymerase at the 5' ends of in vitro-transcribed RNAs. RNA. 1999 May;5(5):618–621. doi: 10.1017/s1355838299982328. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Macdonald L. E., Zhou Y., McAllister W. T. Termination and slippage by bacteriophage T7 RNA polymerase. J Mol Biol. 1993 Aug 20;232(4):1030–1047. doi: 10.1006/jmbi.1993.1458. [DOI] [PubMed] [Google Scholar]
  6. Martin C. T., Muller D. K., Coleman J. E. Processivity in early stages of transcription by T7 RNA polymerase. Biochemistry. 1988 May 31;27(11):3966–3974. doi: 10.1021/bi00411a012. [DOI] [PubMed] [Google Scholar]
  7. Miller W. A., Bujarski J. J., Dreher T. W., Hall T. C. Minus-strand initiation by brome mosaic virus replicase within the 3' tRNA-like structure of native and modified RNA templates. J Mol Biol. 1986 Feb 20;187(4):537–546. doi: 10.1016/0022-2836(86)90332-3. [DOI] [PubMed] [Google Scholar]
  8. Milligan J. F., Groebe D. R., Witherell G. W., Uhlenbeck O. C. Oligoribonucleotide synthesis using T7 RNA polymerase and synthetic DNA templates. Nucleic Acids Res. 1987 Nov 11;15(21):8783–8798. doi: 10.1093/nar/15.21.8783. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Moran S., Ren R. X., Sheils C. J., Rumney S., 4th, Kool E. T. Non-hydrogen bonding 'terminator' nucleosides increase the 3'-end homogeneity of enzymatic RNA and DNA synthesis. Nucleic Acids Res. 1996 Jun 1;24(11):2044–2052. doi: 10.1093/nar/24.11.2044. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Moroney S. E., Piccirilli J. A. Abortive products as initiating nucleotides during transcription by T7 RNA polymerase. Biochemistry. 1991 Oct 22;30(42):10343–10349. doi: 10.1021/bi00106a036. [DOI] [PubMed] [Google Scholar]
  11. Murphy S. K., Parks G. D. Genome nucleotide lengths that are divisible by six are not essential but enhance replication of defective interfering RNAs of the paramyxovirus simian virus 5. Virology. 1997 May 26;232(1):145–157. doi: 10.1006/viro.1997.8530. [DOI] [PubMed] [Google Scholar]
  12. Pleiss J. A., Derrick M. L., Uhlenbeck O. C. T7 RNA polymerase produces 5' end heterogeneity during in vitro transcription from certain templates. RNA. 1998 Oct;4(10):1313–1317. doi: 10.1017/s135583829800106x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Price S. R., Ito N., Oubridge C., Avis J. M., Nagai K. Crystallization of RNA-protein complexes. I. Methods for the large-scale preparation of RNA suitable for crystallographic studies. J Mol Biol. 1995 Jun 2;249(2):398–408. doi: 10.1006/jmbi.1995.0305. [DOI] [PubMed] [Google Scholar]
  14. Siegel R. W., Adkins S., Kao C. C. Sequence-specific recognition of a subgenomic RNA promoter by a viral RNA polymerase. Proc Natl Acad Sci U S A. 1997 Oct 14;94(21):11238–11243. doi: 10.1073/pnas.94.21.11238. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Siegel R. W., Bellon L., Beigelman L., Kao C. C. Use of DNA, RNA, and chimeric templates by a viral RNA-dependent RNA polymerase: evolutionary implications for the transition from the RNA to the DNA world. J Virol. 1999 Aug;73(8):6424–6429. doi: 10.1128/jvi.73.8.6424-6429.1999. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Sun J. H., Adkins S., Faurote G., Kao C. C. Initiation of (-)-strand RNA synthesis catalyzed by the BMV RNA-dependent RNA polymerase: synthesis of oligonucleotides. Virology. 1996 Dec 1;226(1):1–12. doi: 10.1006/viro.1996.0622. [DOI] [PubMed] [Google Scholar]
  17. Symensma T. L., Giver L., Zapp M., Takle G. B., Ellington A. D. RNA aptamers selected to bind human immunodeficiency virus type 1 Rev in vitro are Rev responsive in vivo. J Virol. 1996 Jan;70(1):179–187. doi: 10.1128/jvi.70.1.179-187.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Tuerk C., Gold L. Systematic evolution of ligands by exponential enrichment: RNA ligands to bacteriophage T4 DNA polymerase. Science. 1990 Aug 3;249(4968):505–510. doi: 10.1126/science.2200121. [DOI] [PubMed] [Google Scholar]
  19. Wu M., Tinoco I., Jr RNA folding causes secondary structure rearrangement. Proc Natl Acad Sci U S A. 1998 Sep 29;95(20):11555–11560. doi: 10.1073/pnas.95.20.11555. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Wyatt J. R., Chastain M., Puglisi J. D. Synthesis and purification of large amounts of RNA oligonucleotides. Biotechniques. 1991 Dec;11(6):764–769. [PubMed] [Google Scholar]

Articles from RNA are provided here courtesy of The RNA Society

RESOURCES