Skip to main content
RNA logoLink to RNA
. 1999 Oct;5(10):1277–1289. doi: 10.1017/s1355838299991057

Probing the TRAP-RNA interaction with nucleoside analogs.

M B Elliott 1, P A Gottlieb 1, P Gollnick 1
PMCID: PMC1369850  PMID: 10573119

Abstract

The trp RNA-binding Attenuation Protein (TRAP) from Bacillus subtilis binds a series of GAG and UAG repeats separated by 2-3 nonconserved spacer nucleotides in trp leader mRNA. To identify chemical groups on the RNA required for stability of the TRAP-RNA complex, we introduced several different nucleoside analogs into each pentamer of the RNA sequence 5'-(UAGCC)-3' repeated 11 times and measured their effect on the TRAP-RNA interaction. Deoxyribonucleoside substitutions revealed that a 2'-hydroxyl group (2'-OH) is required only on the guanosine occupying the third residue of the RNA triplets for high-affinity binding to TRAP. The remaining hydroxyl groups are dispensable. Base analog substitutions identified all of the exocyclic functional groups and N1 nitrogens of adenine and guanine in the second and third nucleotides, respectively, of the triplets as being involved in binding TRAP. In contrast, none of the substitutions made in the first residue caused any detectable changes in affinity, indicating that elements of these bases are not necessary for complex formation and stability. Studies using abasic nucleotides in the first residue of the triplets and in the two spacer residues confirmed that the majority of the specificity and stability of the TRAP-RNA complex is provided by the AG dinucleotide of the triplet repeats. In addition to direct effects on binding, we demonstrate that the N7-nitrogen of adenosine and guanosine in UAG triplet and the 2'-OHs of (UAGCC)11 RNA are involved in the formation of an as yet undetermined structure that interferes with TRAP binding.

Full Text

The Full Text of this article is available as a PDF (288.7 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Agris P. F. The importance of being modified: roles of modified nucleosides and Mg2+ in RNA structure and function. Prog Nucleic Acid Res Mol Biol. 1996;53:79–129. doi: 10.1016/s0079-6603(08)60143-9. [DOI] [PubMed] [Google Scholar]
  2. Allain F. H., Varani G. Structure of the P1 helix from group I self-splicing introns. J Mol Biol. 1995 Jul 14;250(3):333–353. doi: 10.1006/jmbi.1995.0381. [DOI] [PubMed] [Google Scholar]
  3. Antson A. A., Otridge J., Brzozowski A. M., Dodson E. J., Dodson G. G., Wilson K. S., Smith T. M., Yang M., Kurecki T., Gollnick P. The structure of trp RNA-binding attenuation protein. Nature. 1995 Apr 20;374(6524):693–700. doi: 10.1038/374693a0. [DOI] [PubMed] [Google Scholar]
  4. Babitzke P., Bear D. G., Yanofsky C. TRAP, the trp RNA-binding attenuation protein of Bacillus subtilis, is a toroid-shaped molecule that binds transcripts containing GAG or UAG repeats separated by two nucleotides. Proc Natl Acad Sci U S A. 1995 Aug 15;92(17):7916–7920. doi: 10.1073/pnas.92.17.7916. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Babitzke P., Stults J. T., Shire S. J., Yanofsky C. TRAP, the trp RNA-binding attenuation protein of Bacillus subtilis, is a multisubunit complex that appears to recognize G/UAG repeats in the trpEDCFBA and trpG transcripts. J Biol Chem. 1994 Jun 17;269(24):16597–16604. [PubMed] [Google Scholar]
  6. Babitzke P., Yealy J., Campanelli D. Interaction of the trp RNA-Binding attenuation protein (TRAP) of Bacillus subtilis with RNA: effects of the number of GAG repeats, the nucleotides separating adjacent repeats, and RNA secondary structure. J Bacteriol. 1996 Sep;178(17):5159–5163. doi: 10.1128/jb.178.17.5159-5163.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Baumann C., Otridge J., Gollnick P. Kinetic and thermodynamic analysis of the interaction between TRAP (trp RNA-binding attenuation protein) of Bacillus subtilis and trp leader RNA. J Biol Chem. 1996 May 24;271(21):12269–12274. doi: 10.1074/jbc.271.21.12269. [DOI] [PubMed] [Google Scholar]
  8. Baumann C., Xirasagar S., Gollnick P. The trp RNA-binding attenuation protein (TRAP) from Bacillus subtilis binds to unstacked trp leader RNA. J Biol Chem. 1997 Aug 8;272(32):19863–19869. doi: 10.1074/jbc.272.32.19863. [DOI] [PubMed] [Google Scholar]
  9. Bernstein P., Ross J. Poly(A), poly(A) binding protein and the regulation of mRNA stability. Trends Biochem Sci. 1989 Sep;14(9):373–377. doi: 10.1016/0968-0004(89)90011-x. [DOI] [PubMed] [Google Scholar]
  10. Chen X. p., Antson A. A., Yang M., Li P., Baumann C., Dodson E. J., Dodson G. G., Gollnick P. Regulatory features of the trp operon and the crystal structure of the trp RNA-binding attenuation protein from Bacillus stearothermophilus. J Mol Biol. 1999 Jun 18;289(4):1003–1016. doi: 10.1006/jmbi.1999.2834. [DOI] [PubMed] [Google Scholar]
  11. Correll C. C., Freeborn B., Moore P. B., Steitz T. A. Metals, motifs, and recognition in the crystal structure of a 5S rRNA domain. Cell. 1997 Nov 28;91(5):705–712. doi: 10.1016/s0092-8674(00)80457-2. [DOI] [PubMed] [Google Scholar]
  12. Du H., Babitzke P. trp RNA-binding attenuation protein-mediated long distance RNA refolding regulates translation of trpE in Bacillus subtilis. J Biol Chem. 1998 Aug 7;273(32):20494–20503. doi: 10.1074/jbc.273.32.20494. [DOI] [PubMed] [Google Scholar]
  13. Du H., Tarpey R., Babitzke P. The trp RNA-binding attenuation protein regulates TrpG synthesis by binding to the trpG ribosome binding site of Bacillus subtilis. J Bacteriol. 1997 Apr;179(8):2582–2586. doi: 10.1128/jb.179.8.2582-2586.1997. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Duggan L. J., Hill T. M., Wu S., Garrison K., Zhang X., Gottlieb P. A. Using modified nucleotides to map the DNA determinants of the Tus-TerB complex, the protein-DNA interaction associated with termination of replication in Escherichia coli. J Biol Chem. 1995 Nov 24;270(47):28049–28054. doi: 10.1074/jbc.270.47.28049. [DOI] [PubMed] [Google Scholar]
  15. Egli M., Portmann S., Usman N. RNA hydration: a detailed look. Biochemistry. 1996 Jul 2;35(26):8489–8494. doi: 10.1021/bi9607214. [DOI] [PubMed] [Google Scholar]
  16. Fedoroff O. Y., Ge Y., Reid B. R. Solution structure of r(gaggacug):d(CAGTCCTC) hybrid: implications for the initiation of HIV-1 (+)-strand synthesis. J Mol Biol. 1997 Jun 6;269(2):225–239. doi: 10.1006/jmbi.1997.1024. [DOI] [PubMed] [Google Scholar]
  17. Fersht A. R. Relationships between apparent binding energies measured in site-directed mutagenesis experiments and energetics of binding and catalysis. Biochemistry. 1988 Mar 8;27(5):1577–1580. doi: 10.1021/bi00405a027. [DOI] [PubMed] [Google Scholar]
  18. Gollnick P. Regulation of the Bacillus subtilis trp operon by an RNA-binding protein. Mol Microbiol. 1994 Mar;11(6):991–997. doi: 10.1111/j.1365-2958.1994.tb00377.x. [DOI] [PubMed] [Google Scholar]
  19. Handa N., Nureki O., Kurimoto K., Kim I., Sakamoto H., Shimura Y., Muto Y., Yokoyama S. Structural basis for recognition of the tra mRNA precursor by the Sex-lethal protein. Nature. 1999 Apr 15;398(6728):579–585. doi: 10.1038/19242. [DOI] [PubMed] [Google Scholar]
  20. Kuroda M. I., Henner D., Yanofsky C. cis-acting sites in the transcript of the Bacillus subtilis trp operon regulate expression of the operon. J Bacteriol. 1988 Jul;170(7):3080–3088. doi: 10.1128/jb.170.7.3080-3088.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Kuroda M. I., Yanofsky C. Evidence for the transcript secondary structures predicted to regulate transcription attenuation in the trp operon. J Biol Chem. 1984 Oct 25;259(20):12838–12843. [PubMed] [Google Scholar]
  22. Laing L. G., Gluick T. C., Draper D. E. Stabilization of RNA structure by Mg ions. Specific and non-specific effects. J Mol Biol. 1994 Apr 15;237(5):577–587. doi: 10.1006/jmbi.1994.1256. [DOI] [PubMed] [Google Scholar]
  23. Lesser D. R., Kurpiewski M. R., Jen-Jacobson L. The energetic basis of specificity in the Eco RI endonuclease--DNA interaction. Science. 1990 Nov 9;250(4982):776–786. doi: 10.1126/science.2237428. [DOI] [PubMed] [Google Scholar]
  24. Li Y., Turner D. H. Effects of Mg2+ and the 2' OH of guanosine on steps required for substrate binding and reactivity with the Tetrahymena ribozyme reveal several local folding transitions. Biochemistry. 1997 Sep 16;36(37):11131–11139. doi: 10.1021/bi971034v. [DOI] [PubMed] [Google Scholar]
  25. Loria A., Pan T. Recognition of the T stem-loop of a pre-tRNA substrate by the ribozyme from Bacillus subtilis ribonuclease P. Biochemistry. 1997 May 27;36(21):6317–6325. doi: 10.1021/bi970115o. [DOI] [PubMed] [Google Scholar]
  26. Luisi B. F., Sigler P. B. The stereochemistry and biochemistry of the trp repressor-operator complex. Biochim Biophys Acta. 1990 Apr 6;1048(2-3):113–126. doi: 10.1016/0167-4781(90)90047-6. [DOI] [PubMed] [Google Scholar]
  27. Mandel-Gutfreund Y., Schueler O., Margalit H. Comprehensive analysis of hydrogen bonds in regulatory protein DNA-complexes: in search of common principles. J Mol Biol. 1995 Oct 20;253(2):370–382. doi: 10.1006/jmbi.1995.0559. [DOI] [PubMed] [Google Scholar]
  28. Mathews D. H., Sabina J., Zuker M., Turner D. H. Expanded sequence dependence of thermodynamic parameters improves prediction of RNA secondary structure. J Mol Biol. 1999 May 21;288(5):911–940. doi: 10.1006/jmbi.1999.2700. [DOI] [PubMed] [Google Scholar]
  29. Mazzarelli J. M., Rajur S. B., Iadarola P. L., McLaughlin L. W. Interactions between the trp repressor and its operator sequence as studied by base analogue substitution. Biochemistry. 1992 Jun 30;31(25):5925–5936. doi: 10.1021/bi00140a032. [DOI] [PubMed] [Google Scholar]
  30. Merino E., Babitzke P., Yanofsky C. trp RNA-binding attenuation protein (TRAP)-trp leader RNA interactions mediate translational as well as transcriptional regulation of the Bacillus subtilis trp operon. J Bacteriol. 1995 Nov;177(22):6362–6370. doi: 10.1128/jb.177.22.6362-6370.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Otridge J., Gollnick P. MtrB from Bacillus subtilis binds specifically to trp leader RNA in a tryptophan-dependent manner. Proc Natl Acad Sci U S A. 1993 Jan 1;90(1):128–132. doi: 10.1073/pnas.90.1.128. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Oubridge C., Ito N., Evans P. R., Teo C. H., Nagai K. Crystal structure at 1.92 A resolution of the RNA-binding domain of the U1A spliceosomal protein complexed with an RNA hairpin. Nature. 1994 Dec 1;372(6505):432–438. doi: 10.1038/372432a0. [DOI] [PubMed] [Google Scholar]
  33. Perreault J. P., Labuda D., Usman N., Yang J. H., Cedergren R. Relationship between 2'-hydroxyls and magnesium binding in the hammerhead RNA domain: a model for ribozyme catalysis. Biochemistry. 1991 Apr 23;30(16):4020–4025. doi: 10.1021/bi00230a029. [DOI] [PubMed] [Google Scholar]
  34. Scott E. C., Uhlenbeck O. C. A re-investigation of the thio effect at the hammerhead cleavage site. Nucleic Acids Res. 1999 Jan 15;27(2):479–484. doi: 10.1093/nar/27.2.479. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Scott W. G., Finch J. T., Klug A. The crystal structure of an all-RNA hammerhead ribozyme: a proposed mechanism for RNA catalytic cleavage. Cell. 1995 Jun 30;81(7):991–1002. doi: 10.1016/s0092-8674(05)80004-2. [DOI] [PubMed] [Google Scholar]
  36. Shimotsu H., Kuroda M. I., Yanofsky C., Henner D. J. Novel form of transcription attenuation regulates expression the Bacillus subtilis tryptophan operon. J Bacteriol. 1986 May;166(2):461–471. doi: 10.1128/jb.166.2.461-471.1986. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Slock J., Stahly D. P., Han C. Y., Six E. W., Crawford I. P. An apparent Bacillus subtilis folic acid biosynthetic operon containing pab, an amphibolic trpG gene, a third gene required for synthesis of para-aminobenzoic acid, and the dihydropteroate synthase gene. J Bacteriol. 1990 Dec;172(12):7211–7226. doi: 10.1128/jb.172.12.7211-7226.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Smith D., Pace N. R. Multiple magnesium ions in the ribonuclease P reaction mechanism. Biochemistry. 1993 May 25;32(20):5273–5281. doi: 10.1021/bi00071a001. [DOI] [PubMed] [Google Scholar]
  39. Sousa R., Padilla R. A mutant T7 RNA polymerase as a DNA polymerase. EMBO J. 1995 Sep 15;14(18):4609–4621. doi: 10.1002/j.1460-2075.1995.tb00140.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  40. Sugimoto N., Tomka M., Kierzek R., Bevilacqua P. C., Turner D. H. Effects of substrate structure on the kinetics of circle opening reactions of the self-splicing intervening sequence from Tetrahymena thermophila: evidence for substrate and Mg2+ binding interactions. Nucleic Acids Res. 1989 Jan 11;17(1):355–371. doi: 10.1093/nar/17.1.355. [DOI] [PMC free article] [PubMed] [Google Scholar]
  41. Szafrański P., 2nd, Smagowicz W. J., Wierzchowski K. L. Substrate selection by RNA polymerase from E. coli. The role of ribose and 5'-triphosphate fragments, and nucleotides interaction. Acta Biochim Pol. 1985;32(4):329–349. [PubMed] [Google Scholar]
  42. Tao J., Frankel A. D. Specific binding of arginine to TAR RNA. Proc Natl Acad Sci U S A. 1992 Apr 1;89(7):2723–2726. doi: 10.1073/pnas.89.7.2723. [DOI] [PMC free article] [PubMed] [Google Scholar]
  43. Tucker-Kellogg L., Rould M. A., Chambers K. A., Ades S. E., Sauer R. T., Pabo C. O. Engrailed (Gln50-->Lys) homeodomain-DNA complex at 1.9 A resolution: structural basis for enhanced affinity and altered specificity. Structure. 1997 Aug 15;5(8):1047–1054. doi: 10.1016/s0969-2126(97)00256-6. [DOI] [PubMed] [Google Scholar]
  44. Tuschl T., Ng M. M., Pieken W., Benseler F., Eckstein F. Importance of exocyclic base functional groups of central core guanosines for hammerhead ribozyme activity. Biochemistry. 1993 Nov 2;32(43):11658–11668. doi: 10.1021/bi00094a023. [DOI] [PubMed] [Google Scholar]
  45. Wang S., Kool E. T. Origins of the large differences in stability of DNA and RNA helices: C-5 methyl and 2'-hydroxyl effects. Biochemistry. 1995 Mar 28;34(12):4125–4132. doi: 10.1021/bi00012a031. [DOI] [PubMed] [Google Scholar]
  46. Wu M., Turner D. H. Solution structure of (rGCGGACGC)2 by two-dimensional NMR and the iterative relaxation matrix approach. Biochemistry. 1996 Jul 30;35(30):9677–9689. doi: 10.1021/bi960133q. [DOI] [PubMed] [Google Scholar]
  47. Xirasagar S., Elliott M. B., Bartolini W., Gollnick P., Gottlieb P. A. RNA structure inhibits the TRAP (trp RNA-binding attenuation protein)-RNA interaction. J Biol Chem. 1998 Oct 16;273(42):27146–27153. doi: 10.1074/jbc.273.42.27146. [DOI] [PubMed] [Google Scholar]
  48. Yang M., Chen X. p., Militello K., Hoffman R., Fernandez B., Baumann C., Gollnick P. Alanine-scanning mutagenesis of Bacillus subtilis trp RNA-binding attenuation protein (TRAP) reveals residues involved in tryptophan binding and RNA binding. J Mol Biol. 1997 Aug 1;270(5):696–710. doi: 10.1006/jmbi.1997.1149. [DOI] [PubMed] [Google Scholar]
  49. Yang M., de Saizieu A., van Loon A. P., Gollnick P. Translation of trpG in Bacillus subtilis is regulated by the trp RNA-binding attenuation protein (TRAP). J Bacteriol. 1995 Aug;177(15):4272–4278. doi: 10.1128/jb.177.15.4272-4278.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  50. Zhang X., Gottlieb P. A. Thermodynamic and alkylation interference analysis of the lac repressor-operator substituted with the analogue 7-deazaguanine. Biochemistry. 1993 Oct 26;32(42):11374–11384. doi: 10.1021/bi00093a014. [DOI] [PubMed] [Google Scholar]

Articles from RNA are provided here courtesy of The RNA Society

RESOURCES