Skip to main content
RNA logoLink to RNA
. 1999 Oct;5(10):1308–1325. doi: 10.1017/s1355838299990891

Relationship between internucleotide linkage geometry and the stability of RNA.

G A Soukup 1, R R Breaker 1
PMCID: PMC1369853  PMID: 10573122

Abstract

The inherent chemical instability of RNA under physiological conditions is primarily due to the spontaneous cleavage of phosphodiester linkages via intramolecular transesterification reactions. Although the protonation state of the nucleophilic 2'-hydroxyl group is a critical determinant of the rate of RNA cleavage, the precise geometry of the chemical groups that comprise each internucleotide linkage also has a significant impact on cleavage activity. Specifically, transesterification is expected to be proportional to the relative in-line character of the linkage. We have examined the rates of spontaneous cleavage of various RNAs for which the secondary and tertiary structures have previously been modeled using either NMR or X-ray crystallographic data. Rate constants determined for the spontaneous cleavage of different RNA linkages vary by almost 10,000-fold, most likely reflecting the contribution that secondary and tertiary structures make towards the overall chemical stability of RNA. Moreover, a correlation is observed between RNA cleavage rate and the relative in-line fitness of each internucleotide linkage. One linkage located within an ATP-binding RNA aptamer is predicted to adopt most closely the ideal conformation for in-line attack. This linkage has a rate constant for transesterification that is approximately 12-fold greater than is observed for an unconstrained linkage and was found to be the most labile among a total of 136 different sites examined. The implications of this relationship for the chemical stability of RNA and for the mechanisms of nucleases and ribozymes are discussed.

Full Text

The Full Text of this article is available as a PDF (1.3 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Brown R. S., Hingerty B. E., Dewan J. C., Klug A. Pb(II)-catalysed cleavage of the sugar-phosphate backbone of yeast tRNAPhe--implications for lead toxicity and self-splicing RNA. Nature. 1983 Jun 9;303(5917):543–546. doi: 10.1038/303543a0. [DOI] [PubMed] [Google Scholar]
  2. Butcher S. E., Dieckmann T., Feigon J. Solution structure of the conserved 16 S-like ribosomal RNA UGAA tetraloop. J Mol Biol. 1997 May 2;268(2):348–358. doi: 10.1006/jmbi.1997.0964. [DOI] [PubMed] [Google Scholar]
  3. Cate J. H., Doudna J. A. Metal-binding sites in the major groove of a large ribozyme domain. Structure. 1996 Oct 15;4(10):1221–1229. doi: 10.1016/s0969-2126(96)00129-3. [DOI] [PubMed] [Google Scholar]
  4. Cate J. H., Gooding A. R., Podell E., Zhou K., Golden B. L., Kundrot C. E., Cech T. R., Doudna J. A. Crystal structure of a group I ribozyme domain: principles of RNA packing. Science. 1996 Sep 20;273(5282):1678–1685. doi: 10.1126/science.273.5282.1678. [DOI] [PubMed] [Google Scholar]
  5. Celander D. W., Cech T. R. Visualizing the higher order folding of a catalytic RNA molecule. Science. 1991 Jan 25;251(4992):401–407. doi: 10.1126/science.1989074. [DOI] [PubMed] [Google Scholar]
  6. Chow Christine S., Bogdan Felicia M. A Structural Basis for RNAminus signLigand Interactions. Chem Rev. 1997 Aug 5;97(5):1489–1514. doi: 10.1021/cr960415w. [DOI] [PubMed] [Google Scholar]
  7. Ciesiołlka J., Lorenz S., Erdmann V. A. Different conformational forms of Escherichia coli and rat liver 5S rRNA revealed by Pb(II)-induced hydrolysis. Eur J Biochem. 1992 Mar 1;204(2):583–589. doi: 10.1111/j.1432-1033.1992.tb16671.x. [DOI] [PubMed] [Google Scholar]
  8. Dieckmann T., Suzuki E., Nakamura G. K., Feigon J. Solution structure of an ATP-binding RNA aptamer reveals a novel fold. RNA. 1996 Jul;2(7):628–640. [PMC free article] [PubMed] [Google Scholar]
  9. Draper D. E. Strategies for RNA folding. Trends Biochem Sci. 1996 Apr;21(4):145–149. [PubMed] [Google Scholar]
  10. Fan P., Suri A. K., Fiala R., Live D., Patel D. J. Molecular recognition in the FMN-RNA aptamer complex. J Mol Biol. 1996 May 10;258(3):480–500. doi: 10.1006/jmbi.1996.0263. [DOI] [PubMed] [Google Scholar]
  11. Feigon J., Dieckmann T., Smith F. W. Aptamer structures from A to zeta. Chem Biol. 1996 Aug;3(8):611–617. doi: 10.1016/s1074-5521(96)90127-1. [DOI] [PubMed] [Google Scholar]
  12. Ferré-D'Amaré A. R., Zhou K., Doudna J. A. Crystal structure of a hepatitis delta virus ribozyme. Nature. 1998 Oct 8;395(6702):567–574. doi: 10.1038/26912. [DOI] [PubMed] [Google Scholar]
  13. Gold L., Polisky B., Uhlenbeck O., Yarus M. Diversity of oligonucleotide functions. Annu Rev Biochem. 1995;64:763–797. doi: 10.1146/annurev.bi.64.070195.003555. [DOI] [PubMed] [Google Scholar]
  14. Jiang F., Kumar R. A., Jones R. A., Patel D. J. Structural basis of RNA folding and recognition in an AMP-RNA aptamer complex. Nature. 1996 Jul 11;382(6587):183–186. doi: 10.1038/382183a0. [DOI] [PubMed] [Google Scholar]
  15. Jiang L., Suri A. K., Fiala R., Patel D. J. Saccharide-RNA recognition in an aminoglycoside antibiotic-RNA aptamer complex. Chem Biol. 1997 Jan;4(1):35–50. doi: 10.1016/s1074-5521(97)90235-0. [DOI] [PubMed] [Google Scholar]
  16. Jin R., Chapman W. H., Jr, Srinivasan A. R., Olson W. K., Breslow R., Breslauer K. J. Comparative spectroscopic, calorimetric, and computational studies of nucleic acid complexes with 2',5"-versus 3',5"-phosphodiester linkages. Proc Natl Acad Sci U S A. 1993 Nov 15;90(22):10568–10572. doi: 10.1073/pnas.90.22.10568. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Jucker F. M., Heus H. A., Yip P. F., Moors E. H., Pardi A. A network of heterogeneous hydrogen bonds in GNRA tetraloops. J Mol Biol. 1996 Dec 20;264(5):968–980. doi: 10.1006/jmbi.1996.0690. [DOI] [PubMed] [Google Scholar]
  18. Kazakov S., Altman S. Site-specific cleavage by metal ion cofactors and inhibitors of M1 RNA, the catalytic subunit of RNase P from Escherichia coli. Proc Natl Acad Sci U S A. 1991 Oct 15;88(20):9193–9197. doi: 10.1073/pnas.88.20.9193. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Kierzek R. Nonenzymatic hydrolysis of oligoribonucleotides. Nucleic Acids Res. 1992 Oct 11;20(19):5079–5084. doi: 10.1093/nar/20.19.5079. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Knapp G. Enzymatic approaches to probing of RNA secondary and tertiary structure. Methods Enzymol. 1989;180:192–212. doi: 10.1016/0076-6879(89)80102-8. [DOI] [PubMed] [Google Scholar]
  21. Kuimelis Robert G., McLaughlin Larry W. Mechanisms of Ribozyme-Mediated RNA Cleavage. Chem Rev. 1998 May 7;98(3):1027–1044. doi: 10.1021/cr960426p. [DOI] [PubMed] [Google Scholar]
  22. Murphy F. L., Cech T. R. An independently folding domain of RNA tertiary structure within the Tetrahymena ribozyme. Biochemistry. 1993 May 25;32(20):5291–5300. doi: 10.1021/bi00071a003. [DOI] [PubMed] [Google Scholar]
  23. Murray J. B., Terwey D. P., Maloney L., Karpeisky A., Usman N., Beigelman L., Scott W. G. The structural basis of hammerhead ribozyme self-cleavage. Cell. 1998 Mar 6;92(5):665–673. doi: 10.1016/s0092-8674(00)81134-4. [DOI] [PubMed] [Google Scholar]
  24. Nonin S., Jiang F., Patel D. J. Imino proton exchange and base-pair kinetics in the AMP-RNA aptamer complex. J Mol Biol. 1997 May 2;268(2):359–374. doi: 10.1006/jmbi.1997.0986. [DOI] [PubMed] [Google Scholar]
  25. Oivanen Mikko, Kuusela Satu, Lönnberg Harri. Kinetics and Mechanisms for the Cleavage and Isomerization of the Phosphodiester Bonds of RNA by Brønsted Acids and Bases. Chem Rev. 1998 May 7;98(3):961–990. doi: 10.1021/cr960425x. [DOI] [PubMed] [Google Scholar]
  26. Osborne Scott E., Ellington Andrew D. Nucleic Acid Selection and the Challenge of Combinatorial Chemistry. Chem Rev. 1997 Apr 1;97(2):349–370. doi: 10.1021/cr960009c. [DOI] [PubMed] [Google Scholar]
  27. Patel D. J. Structural analysis of nucleic acid aptamers. Curr Opin Chem Biol. 1997 Jun;1(1):32–46. doi: 10.1016/s1367-5931(97)80106-8. [DOI] [PubMed] [Google Scholar]
  28. Patel D. J., Suri A. K., Jiang F., Jiang L., Fan P., Kumar R. A., Nonin S. Structure, recognition and adaptive binding in RNA aptamer complexes. J Mol Biol. 1997 Oct 10;272(5):645–664. doi: 10.1006/jmbi.1997.1281. [DOI] [PubMed] [Google Scholar]
  29. Polacek N., Barta A. Metal ion probing of rRNAs: evidence for evolutionarily conserved divalent cation binding pockets. RNA. 1998 Oct;4(10):1282–1294. doi: 10.1017/s1355838298980347. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Puglisi E. V., Puglisi J. D., Williamson J. R., RajBhandary U. L. NMR analysis of tRNA acceptor stem microhelices: discriminator base change affects tRNA conformation at the 3' end. Proc Natl Acad Sci U S A. 1994 Nov 22;91(24):11467–11471. doi: 10.1073/pnas.91.24.11467. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Pyle A. M., Green J. B. RNA folding. Curr Opin Struct Biol. 1995 Jun;5(3):303–310. doi: 10.1016/0959-440x(95)80091-3. [DOI] [PubMed] [Google Scholar]
  32. Pyle A. M. Ribozymes: a distinct class of metalloenzymes. Science. 1993 Aug 6;261(5122):709–714. doi: 10.1126/science.7688142. [DOI] [PubMed] [Google Scholar]
  33. Pyle A. M. Role of metal ions in ribozymes. Met Ions Biol Syst. 1996;32:479–520. [PubMed] [Google Scholar]
  34. Reynolds M. A., Beck T. A., Say P. B., Schwartz D. A., Dwyer B. P., Daily W. J., Vaghefi M. M., Metzler M. D., Klem R. E., Arnold L. J. Antisense oligonucleotide containing an internal, non-nucleotide-based linker promote site-specific cleavage of RNA. Nucleic Acids Res. 1996 Feb 15;24(4):760–765. doi: 10.1093/nar/24.4.760. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Sassanfar M., Szostak J. W. An RNA motif that binds ATP. Nature. 1993 Aug 5;364(6437):550–553. doi: 10.1038/364550a0. [DOI] [PubMed] [Google Scholar]
  36. Scott W. G., Finch J. T., Klug A. The crystal structure of an all-RNA hammerhead ribozyme: a proposed mechanism for RNA catalytic cleavage. Cell. 1995 Jun 30;81(7):991–1002. doi: 10.1016/s0092-8674(05)80004-2. [DOI] [PubMed] [Google Scholar]
  37. Suh Y. A., Kumar P. K., Taira K., Nishikawa S. Self-cleavage activity of the genomic HDV ribozyme in the presence of various divalent metal ions. Nucleic Acids Res. 1993 Jul 11;21(14):3277–3280. doi: 10.1093/nar/21.14.3277. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Tang J., Breaker R. R. Rational design of allosteric ribozymes. Chem Biol. 1997 Jun;4(6):453–459. doi: 10.1016/s1074-5521(97)90197-6. [DOI] [PubMed] [Google Scholar]
  39. Usher D. A., McHale A. H. Hydrolytic stability of helical RNA: a selective advantage for the natural 3',5'-bond. Proc Natl Acad Sci U S A. 1976 Apr;73(4):1149–1153. doi: 10.1073/pnas.73.4.1149. [DOI] [PMC free article] [PubMed] [Google Scholar]
  40. Usher D. A. On the mechanism of ribonuclease action. Proc Natl Acad Sci U S A. 1969 Mar;62(3):661–667. doi: 10.1073/pnas.62.3.661. [DOI] [PMC free article] [PubMed] [Google Scholar]
  41. Varani G., Cheong C., Tinoco I., Jr Structure of an unusually stable RNA hairpin. Biochemistry. 1991 Apr 2;30(13):3280–3289. doi: 10.1021/bi00227a016. [DOI] [PubMed] [Google Scholar]
  42. Wedekind J. E., McKay D. B. Crystal structure of a lead-dependent ribozyme revealing metal binding sites relevant to catalysis. Nat Struct Biol. 1999 Mar;6(3):261–268. doi: 10.1038/6700. [DOI] [PubMed] [Google Scholar]
  43. Welch M., Majerfeld I., Yarus M. 23S rRNA similarity from selection for peptidyl transferase mimicry. Biochemistry. 1997 Jun 3;36(22):6614–6623. doi: 10.1021/bi963135j. [DOI] [PubMed] [Google Scholar]
  44. Williams K. P., Ciafré S., Tocchini-Valentini G. P. Selection of novel Mg(2+)-dependent self-cleaving ribozymes. EMBO J. 1995 Sep 15;14(18):4551–4557. doi: 10.1002/j.1460-2075.1995.tb00134.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  45. Wu M., Tinoco I., Jr RNA folding causes secondary structure rearrangement. Proc Natl Acad Sci U S A. 1998 Sep 29;95(20):11555–11560. doi: 10.1073/pnas.95.20.11555. [DOI] [PMC free article] [PubMed] [Google Scholar]
  46. Yang Y., Kochoyan M., Burgstaller P., Westhof E., Famulok M. Structural basis of ligand discrimination by two related RNA aptamers resolved by NMR spectroscopy. Science. 1996 May 31;272(5266):1343–1347. doi: 10.1126/science.272.5266.1343. [DOI] [PubMed] [Google Scholar]
  47. Zagórowska I., Kuusela S., Lönnberg H. Metal ion-dependent hydrolysis of RNA phosphodiester bonds within hairpin loops. A comparative kinetic study on chimeric ribo/2'-O-methylribo oligonucleotides. Nucleic Acids Res. 1998 Jul 15;26(14):3392–3396. doi: 10.1093/nar/26.14.3392. [DOI] [PMC free article] [PubMed] [Google Scholar]
  48. Zhou De-Min, Taira Kazunari. The Hydrolysis of RNA: From Theoretical Calculations to the Hammerhead Ribozyme-Mediated Cleavage of RNA. Chem Rev. 1998 May 7;98(3):991–1026. doi: 10.1021/cr9604292. [DOI] [PubMed] [Google Scholar]
  49. Zimmermann G. R., Jenison R. D., Wick C. L., Simorre J. P., Pardi A. Interlocking structural motifs mediate molecular discrimination by a theophylline-binding RNA. Nat Struct Biol. 1997 Aug;4(8):644–649. doi: 10.1038/nsb0897-644. [DOI] [PubMed] [Google Scholar]

Articles from RNA are provided here courtesy of The RNA Society

RESOURCES