Skip to main content
RNA logoLink to RNA
. 1999 Oct;5(10):1384–1395. doi: 10.1017/s1355838299991173

A sulfate pocket formed by three GoU pairs in the 0.97 A resolution X-ray structure of a nonameric RNA.

B Masquida 1, C Sauter 1, E Westhof 1
PMCID: PMC1369860  PMID: 10573129

Abstract

The crystal structure of the RNA duplex [r(CGUGAUCG)dC]2 has been solved at a resolution of 0.97 A. The model has been refined to R-work and R-free of 14.88% and 19.54% for 23,838 independent reflections. The base-pairing scheme forces the 5'-rC to be excluded from the helix and to be disordered. In the crystals, the sequence promotes the formation of two GoU wobble pairs that cluster around a crystallographic threefold axis in two different ways. In the first contact type, the GoU pairs are exclusively surrounded by water molecules, whereas in the other contact type, the three amino groups of the guanine residues of the symmetry-related GoU pairs trap a sulfate ion. This work provides the first example of the interaction of a GoU pair with a sulfate ion in a helical context. Despite the negative charge on the polynucleotide backbone, the guanine amino N2 is able to attract negatively charged groups that could, in the folding of complex RNA molecules, belong to a negative phosphodiester group from a neighboring strand and, in a RNA-protein complex, to a negative carboxyl group of an aspartate or glutamate side chain.

Full Text

The Full Text of this article is available as a PDF (1.3 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Anderson A. C., Earp B. E., Frederick C. A. Sequence variation as a strategy for crystallizing RNA motifs. J Mol Biol. 1996 Jun 21;259(4):696–703. doi: 10.1006/jmbi.1996.0351. [DOI] [PubMed] [Google Scholar]
  2. Antao V. P., Tinoco I., Jr Thermodynamic parameters for loop formation in RNA and DNA hairpin tetraloops. Nucleic Acids Res. 1992 Feb 25;20(4):819–824. doi: 10.1093/nar/20.4.819. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Arnott S., Hukins D. W., Dover S. D., Fuller W., Hodgson A. R. Structures of synthetic polynucleotides in the A-RNA and A'-RNA conformations: x-ray diffraction analyses of the molecular conformations of polyadenylic acid--polyuridylic acid and polyinosinic acid--polycytidylic acid. J Mol Biol. 1973 Dec 5;81(2):107–122. doi: 10.1016/0022-2836(73)90183-6. [DOI] [PubMed] [Google Scholar]
  4. Auffinger P., Westhof E. Hydration of RNA base pairs. J Biomol Struct Dyn. 1998 Dec;16(3):693–707. doi: 10.1080/07391102.1998.10508281. [DOI] [PubMed] [Google Scholar]
  5. Auffinger P., Westhof E. Rules governing the orientation of the 2'-hydroxyl group in RNA. J Mol Biol. 1997 Nov 21;274(1):54–63. doi: 10.1006/jmbi.1997.1370. [DOI] [PubMed] [Google Scholar]
  6. Baeyens K. J., De Bondt H. L., Holbrook S. R. Structure of an RNA double helix including uracil-uracil base pairs in an internal loop. Nat Struct Biol. 1995 Jan;2(1):56–62. doi: 10.1038/nsb0195-56. [DOI] [PubMed] [Google Scholar]
  7. Baeyens K. J., De Bondt H. L., Pardi A., Holbrook S. R. A curved RNA helix incorporating an internal loop with G.A and A.A non-Watson-Crick base pairing. Proc Natl Acad Sci U S A. 1996 Nov 12;93(23):12851–12855. doi: 10.1073/pnas.93.23.12851. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Biswas R., Sundaralingam M. Crystal structure of r(GUGUGUA)dC with tandem G x U/U x G wobble pairs with strand slippage. J Mol Biol. 1997 Jul 18;270(3):511–519. doi: 10.1006/jmbi.1997.1118. [DOI] [PubMed] [Google Scholar]
  9. Biswas R., Wahl M. C., Ban C., Sundaralingam M. Crystal structure of an alternating octamer r(GUAUGUA)dC with adjacent G x U wobble pairs. J Mol Biol. 1997 Apr 18;267(5):1149–1156. doi: 10.1006/jmbi.1997.0936. [DOI] [PubMed] [Google Scholar]
  10. Brünger A. T., Adams P. D., Clore G. M., DeLano W. L., Gros P., Grosse-Kunstleve R. W., Jiang J. S., Kuszewski J., Nilges M., Pannu N. S. Crystallography & NMR system: A new software suite for macromolecular structure determination. Acta Crystallogr D Biol Crystallogr. 1998 Sep 1;54(Pt 5):905–921. doi: 10.1107/s0907444998003254. [DOI] [PubMed] [Google Scholar]
  11. Butcher S. E., Dieckmann T., Feigon J. Solution structure of a GAAA tetraloop receptor RNA. EMBO J. 1997 Dec 15;16(24):7490–7499. doi: 10.1093/emboj/16.24.7490. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Cate J. H., Doudna J. A. Metal-binding sites in the major groove of a large ribozyme domain. Structure. 1996 Oct 15;4(10):1221–1229. doi: 10.1016/s0969-2126(96)00129-3. [DOI] [PubMed] [Google Scholar]
  13. Cate J. H., Gooding A. R., Podell E., Zhou K., Golden B. L., Kundrot C. E., Cech T. R., Doudna J. A. Crystal structure of a group I ribozyme domain: principles of RNA packing. Science. 1996 Sep 20;273(5282):1678–1685. doi: 10.1126/science.273.5282.1678. [DOI] [PubMed] [Google Scholar]
  14. Cech T. R., Damberger S. H., Gutell R. R. Representation of the secondary and tertiary structure of group I introns. Nat Struct Biol. 1994 May;1(5):273–280. doi: 10.1038/nsb0594-273. [DOI] [PubMed] [Google Scholar]
  15. Cech T. R., Zaug A. J., Grabowski P. J. In vitro splicing of the ribosomal RNA precursor of Tetrahymena: involvement of a guanosine nucleotide in the excision of the intervening sequence. Cell. 1981 Dec;27(3 Pt 2):487–496. doi: 10.1016/0092-8674(81)90390-1. [DOI] [PubMed] [Google Scholar]
  16. Crick F. H. Codon--anticodon pairing: the wobble hypothesis. J Mol Biol. 1966 Aug;19(2):548–555. doi: 10.1016/s0022-2836(66)80022-0. [DOI] [PubMed] [Google Scholar]
  17. Cruse W. B., Saludjian P., Biala E., Strazewski P., Prangé T., Kennard O. Structure of a mispaired RNA double helix at 1.6-A resolution and implications for the prediction of RNA secondary structure. Proc Natl Acad Sci U S A. 1994 May 10;91(10):4160–4164. doi: 10.1073/pnas.91.10.4160. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Egli M., Portmann S., Usman N. RNA hydration: a detailed look. Biochemistry. 1996 Jul 2;35(26):8489–8494. doi: 10.1021/bi9607214. [DOI] [PubMed] [Google Scholar]
  19. Evans S. V. SETOR: hardware-lighted three-dimensional solid model representations of macromolecules. J Mol Graph. 1993 Jun;11(2):134-8, 127-8. doi: 10.1016/0263-7855(93)87009-t. [DOI] [PubMed] [Google Scholar]
  20. Frugier M., Schimmel P. Subtle atomic group discrimination in the RNA minor groove. Proc Natl Acad Sci U S A. 1997 Oct 14;94(21):11291–11294. doi: 10.1073/pnas.94.21.11291. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Holbrook S. R., Cheong C., Tinoco I., Jr, Kim S. H. Crystal structure of an RNA double helix incorporating a track of non-Watson-Crick base pairs. Nature. 1991 Oct 10;353(6344):579–581. doi: 10.1038/353579a0. [DOI] [PubMed] [Google Scholar]
  22. Hüttenhofer A., Westhof E., Böck A. Solution structure of mRNA hairpins promoting selenocysteine incorporation in Escherichia coli and their base-specific interaction with special elongation factor SELB. RNA. 1996 Apr;2(4):354–366. [PMC free article] [PubMed] [Google Scholar]
  23. Jones T. A., Zou J. Y., Cowan S. W., Kjeldgaard M. Improved methods for building protein models in electron density maps and the location of errors in these models. Acta Crystallogr A. 1991 Mar 1;47(Pt 2):110–119. doi: 10.1107/s0108767390010224. [DOI] [PubMed] [Google Scholar]
  24. Larson S. B., Day J., Greenwood A., McPherson A. Refined structure of satellite tobacco mosaic virus at 1.8 A resolution. J Mol Biol. 1998 Mar 20;277(1):37–59. doi: 10.1006/jmbi.1997.1570. [DOI] [PubMed] [Google Scholar]
  25. Lavery R., Sklenar H. Defining the structure of irregular nucleic acids: conventions and principles. J Biomol Struct Dyn. 1989 Feb;6(4):655–667. doi: 10.1080/07391102.1989.10507728. [DOI] [PubMed] [Google Scholar]
  26. Lecchi P., Le H. M., Pannell L. K. 6-Aza-2-thiothymine: a matrix for MALDI spectra of oligonucleotides. Nucleic Acids Res. 1995 Apr 11;23(7):1276–1277. doi: 10.1093/nar/23.7.1276. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Lietzke S. E., Barnes C. L., Berglund J. A., Kundrot C. E. The structure of an RNA dodecamer shows how tandem U-U base pairs increase the range of stable RNA structures and the diversity of recognition sites. Structure. 1996 Aug 15;4(8):917–930. doi: 10.1016/s0969-2126(96)00099-8. [DOI] [PubMed] [Google Scholar]
  28. Massire C., Gaspin C., Westhof E. DRAWNA: a program for drawing schematic views of nucleic acids. J Mol Graph. 1994 Sep;12(3):201-6, 196. doi: 10.1016/0263-7855(94)80088-x. [DOI] [PubMed] [Google Scholar]
  29. McClain W. H., Chen Y. M., Foss K., Schneider J. Association of transfer RNA acceptor identity with a helical irregularity. Science. 1988 Dec 23;242(4886):1681–1684. doi: 10.1126/science.2462282. [DOI] [PubMed] [Google Scholar]
  30. Michel F., Jacquier A., Dujon B. Comparison of fungal mitochondrial introns reveals extensive homologies in RNA secondary structure. Biochimie. 1982 Oct;64(10):867–881. doi: 10.1016/s0300-9084(82)80349-0. [DOI] [PubMed] [Google Scholar]
  31. Michel F., Westhof E. Modelling of the three-dimensional architecture of group I catalytic introns based on comparative sequence analysis. J Mol Biol. 1990 Dec 5;216(3):585–610. doi: 10.1016/0022-2836(90)90386-Z. [DOI] [PubMed] [Google Scholar]
  32. Mizuno H., Sundaralingam M. Stacking of Crick Wobble pair and Watson-Crick pair: stability rules of G-U pairs at ends of helical stems in tRNAs and the relation to codon-anticodon Wobble interaction. Nucleic Acids Res. 1978 Nov;5(11):4451–4461. doi: 10.1093/nar/5.11.4451. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Mueller U., Schübel H., Sprinzl M., Heinemann U. Crystal structure of acceptor stem of tRNA(Ala) from Escherichia coli shows unique G.U wobble base pair at 1.16 A resolution. RNA. 1999 May;5(5):670–677. doi: 10.1017/s1355838299982304. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Musier-Forsyth K., Usman N., Scaringe S., Doudna J., Green R., Schimmel P. Specificity for aminoacylation of an RNA helix: an unpaired, exocyclic amino group in the minor groove. Science. 1991 Aug 16;253(5021):784–786. doi: 10.1126/science.1876835. [DOI] [PubMed] [Google Scholar]
  35. Oubridge C., Ito N., Evans P. R., Teo C. H., Nagai K. Crystal structure at 1.92 A resolution of the RNA-binding domain of the U1A spliceosomal protein complexed with an RNA hairpin. Nature. 1994 Dec 1;372(6505):432–438. doi: 10.1038/372432a0. [DOI] [PubMed] [Google Scholar]
  36. Park S. J., Hou Y. M., Schimmel P. A single base pair affects binding and catalytic parameters in the molecular recognition of a transfer RNA. Biochemistry. 1989 Mar 21;28(6):2740–2746. doi: 10.1021/bi00432a056. [DOI] [PubMed] [Google Scholar]
  37. Pflugrath J. W., Quiocho F. A. Sulphate sequestered in the sulphate-binding protein of Salmonella typhimurium is bound solely by hydrogen bonds. Nature. 1985 Mar 21;314(6008):257–260. doi: 10.1038/314257a0. [DOI] [PubMed] [Google Scholar]
  38. Portmann S., Usman N., Egli M. The crystal structure of r(CCCCGGGG) in two distinct lattices. Biochemistry. 1995 Jun 13;34(23):7569–7575. doi: 10.1021/bi00023a002. [DOI] [PubMed] [Google Scholar]
  39. Rossjohn J., McKinstry W. J., Oakley A. J., Verger D., Flanagan J., Chelvanayagam G., Tan K. L., Board P. G., Parker M. W. Human theta class glutathione transferase: the crystal structure reveals a sulfate-binding pocket within a buried active site. Structure. 1998 Mar 15;6(3):309–322. doi: 10.1016/s0969-2126(98)00034-3. [DOI] [PubMed] [Google Scholar]
  40. Scott W. G., Finch J. T., Grenfell R., Fogg J., Smith T., Gait M. J., Klug A. Rapid crystallization of chemically synthesized hammerhead RNAs using a double screening procedure. J Mol Biol. 1995 Jul 14;250(3):327–332. doi: 10.1006/jmbi.1995.0380. [DOI] [PubMed] [Google Scholar]
  41. Sharmeen L., Kuo M. Y., Dinter-Gottlieb G., Taylor J. Antigenomic RNA of human hepatitis delta virus can undergo self-cleavage. J Virol. 1988 Aug;62(8):2674–2679. doi: 10.1128/jvi.62.8.2674-2679.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  42. Shi K., Wahl M., Sundaralingam M. Crystal structure of an RNA duplex r(G GCGC CC)2 with non-adjacent G*U base pairs. Nucleic Acids Res. 1999 May 15;27(10):2196–2201. doi: 10.1093/nar/27.10.2196. [DOI] [PMC free article] [PubMed] [Google Scholar]
  43. Strobel S. A., Ortoleva-Donnelly L. A hydrogen-bonding triad stabilizes the chemical transition state of a group I ribozyme. Chem Biol. 1999 Mar;6(3):153–165. doi: 10.1016/S1074-5521(99)89007-3. [DOI] [PubMed] [Google Scholar]
  44. Su L., Chen L., Egli M., Berger J. M., Rich A. Minor groove RNA triplex in the crystal structure of a ribosomal frameshifting viral pseudoknot. Nat Struct Biol. 1999 Mar;6(3):285–292. doi: 10.1038/6722. [DOI] [PMC free article] [PubMed] [Google Scholar]
  45. Wahl M. C., Ban C., Sekharudu C., Ramakrishnan B., Sundaralingam M. Structure of the purine-pyrimidine alternating RNA double helix, r(GUAUAUA)d(C), with a 3'-terminal deoxy residue. Acta Crystallogr D Biol Crystallogr. 1996 Jul 1;52(Pt 4):655–667. doi: 10.1107/S0907444996000248. [DOI] [PubMed] [Google Scholar]
  46. Walczak R., Carbon P., Krol A. An essential non-Watson-Crick base pair motif in 3'UTR to mediate selenoprotein translation. RNA. 1998 Jan;4(1):74–84. [PMC free article] [PubMed] [Google Scholar]
  47. Westhof E., Dumas P., Moras D. Crystallographic refinement of yeast aspartic acid transfer RNA. J Mol Biol. 1985 Jul 5;184(1):119–145. doi: 10.1016/0022-2836(85)90048-8. [DOI] [PubMed] [Google Scholar]
  48. Wu M., Tinoco I., Jr RNA folding causes secondary structure rearrangement. Proc Natl Acad Sci U S A. 1998 Sep 29;95(20):11555–11560. doi: 10.1073/pnas.95.20.11555. [DOI] [PMC free article] [PubMed] [Google Scholar]
  49. Xiong Y., Sundaralingam M. Crystal structure and conformation of a DNA-RNA hybrid duplex with a polypurine RNA strand: d(TTCTTBr5CTTC)-r(GAAGAAGAA). Structure. 1998 Dec 15;6(12):1493–1501. doi: 10.1016/s0969-2126(98)00148-8. [DOI] [PubMed] [Google Scholar]

Articles from RNA are provided here courtesy of The RNA Society

RESOURCES