Abstract
The signal recognition particle (SRP) is a phylogenetically conserved ribonucleoprotein required for cotranslational targeting of proteins to the membrane of the endoplasmic reticulum of the bacterial plasma membrane. Domain IV of SRP RNA consists of a short stem-loop structure with two internal loops that contain the most conserved nucleotides of the molecule. All known essential interactions of SRP occur in that moiety containing domain IV. The solution structure of a 43-nt RNA comprising the complete Escherichia coli domain IV was determined by multidimensional NMR and restrained molecular dynamics refinement. Our data confirm the previously determined rigid structure of a smaller subfragment containing the most conserved, symmetric internal loop A (Schmitz et al., Nat Struct Biol, 1999, 6:634-638), where all conserved nucleotides are involved in nucleotide-specific structural interactions. Asymmetric internal loop B provides a hinge in the RNA molecule; it is partially flexible, yet also uniquely structured. The longer strand of internal loop B extends the major groove by creating a ledge-like arrangement; for loop B however, there is no obvious structural role for the conserved nucleotides. The structure of domain IV suggests that loop A is the initial site for the RNA/protein interaction creating specificity, whereas loop B provides a secondary interaction site.
Full Text
The Full Text of this article is available as a PDF (580.3 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Andrews D. W., Walter P., Ottensmeyer F. P. Evidence for an extended 7SL RNA structure in the signal recognition particle. EMBO J. 1987 Nov;6(11):3471–3477. doi: 10.1002/j.1460-2075.1987.tb02671.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Batey R. T., Battiste J. L., Williamson J. R. Preparation of isotopically enriched RNAs for heteronuclear NMR. Methods Enzymol. 1995;261:300–322. doi: 10.1016/s0076-6879(95)61015-4. [DOI] [PubMed] [Google Scholar]
- Bernstein H. D., Zopf D., Freymann D. M., Walter P. Functional substitution of the signal recognition particle 54-kDa subunit by its Escherichia coli homolog. Proc Natl Acad Sci U S A. 1993 Jun 1;90(11):5229–5233. doi: 10.1073/pnas.90.11.5229. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Butcher S. E., Dieckmann T., Feigon J. Solution structure of the conserved 16 S-like ribosomal RNA UGAA tetraloop. J Mol Biol. 1997 May 2;268(2):348–358. doi: 10.1006/jmbi.1997.0964. [DOI] [PubMed] [Google Scholar]
- Cate J. H., Gooding A. R., Podell E., Zhou K., Golden B. L., Szewczak A. A., Kundrot C. E., Cech T. R., Doudna J. A. RNA tertiary structure mediation by adenosine platforms. Science. 1996 Sep 20;273(5282):1696–1699. doi: 10.1126/science.273.5282.1696. [DOI] [PubMed] [Google Scholar]
- Delaglio F., Grzesiek S., Vuister G. W., Zhu G., Pfeifer J., Bax A. NMRPipe: a multidimensional spectral processing system based on UNIX pipes. J Biomol NMR. 1995 Nov;6(3):277–293. doi: 10.1007/BF00197809. [DOI] [PubMed] [Google Scholar]
- Güntert P., Mumenthaler C., Wüthrich K. Torsion angle dynamics for NMR structure calculation with the new program DYANA. J Mol Biol. 1997 Oct 17;273(1):283–298. doi: 10.1006/jmbi.1997.1284. [DOI] [PubMed] [Google Scholar]
- Haner R. L., Schleich T. Measurement of translational motion by pulse-gradient spin-echo nuclear magnetic resonance. Methods Enzymol. 1989;176:418–446. doi: 10.1016/0076-6879(89)76023-7. [DOI] [PubMed] [Google Scholar]
- Jaeger J. A., Tinoco I., Jr An NMR study of the HIV-1 TAR element hairpin. Biochemistry. 1993 Nov 23;32(46):12522–12530. doi: 10.1021/bi00097a032. [DOI] [PubMed] [Google Scholar]
- Jucker F. M., Heus H. A., Yip P. F., Moors E. H., Pardi A. A network of heterogeneous hydrogen bonds in GNRA tetraloops. J Mol Biol. 1996 Dec 20;264(5):968–980. doi: 10.1006/jmbi.1996.0690. [DOI] [PubMed] [Google Scholar]
- Keenan R. J., Freymann D. M., Walter P., Stroud R. M. Crystal structure of the signal sequence binding subunit of the signal recognition particle. Cell. 1998 Jul 24;94(2):181–191. doi: 10.1016/s0092-8674(00)81418-x. [DOI] [PubMed] [Google Scholar]
- Kurita K., Honda K., Suzuma S., Takamatsu H., Nakamura K., Yamane K. Identification of a region of Bacillus subtilis Ffh, a homologue of mammalian SRP54 protein, that is essential for binding to small cytoplasmic RNA. J Biol Chem. 1996 May 31;271(22):13140–13146. doi: 10.1074/jbc.271.22.13140. [DOI] [PubMed] [Google Scholar]
- Lapham J., Rife J. P., Moore P. B., Crothers D. M. Measurement of diffusion constants for nucleic acids by NMR. J Biomol NMR. 1997 Oct;10(3):255–262. doi: 10.1023/a:1018310702909. [DOI] [PubMed] [Google Scholar]
- Larsen N., Samuelsson T., Zwieb C. The Signal Recognition Particle Database (SRPDB). Nucleic Acids Res. 1998 Jan 1;26(1):177–178. doi: 10.1093/nar/26.1.177. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lentzen G., Moine H., Ehresmann C., Ehresmann B., Wintermeyer W. Structure of 4.5S RNA in the signal recognition particle of Escherichia coli as studied by enzymatic and chemical probing. RNA. 1996 Mar;2(3):244–253. [PMC free article] [PubMed] [Google Scholar]
- Liu H., Spielmann H. P., Ulyanov N. B., Wemmer D. E., James T. L. Interproton distance bounds from 2D NOE intensities: effect of experimental noise and peak integration errors. J Biomol NMR. 1995 Dec;6(4):390–402. doi: 10.1007/BF00197638. [DOI] [PubMed] [Google Scholar]
- Liu H., Tonelli M., James T. L. Correcting NOESY cross-peak intensities for partial relaxation effects enabling accurate distance information. J Magn Reson B. 1996 Apr;111(1):85–89. doi: 10.1006/jmrb.1996.0064. [DOI] [PubMed] [Google Scholar]
- Milligan J. F., Uhlenbeck O. C. Synthesis of small RNAs using T7 RNA polymerase. Methods Enzymol. 1989;180:51–62. doi: 10.1016/0076-6879(89)80091-6. [DOI] [PubMed] [Google Scholar]
- Nikonowicz E. P., Pardi A. An efficient procedure for assignment of the proton, carbon and nitrogen resonances in 13C/15N labeled nucleic acids. J Mol Biol. 1993 Aug 20;232(4):1141–1156. doi: 10.1006/jmbi.1993.1466. [DOI] [PubMed] [Google Scholar]
- Powers T., Walter P. Co-translational protein targeting catalyzed by the Escherichia coli signal recognition particle and its receptor. EMBO J. 1997 Aug 15;16(16):4880–4886. doi: 10.1093/emboj/16.16.4880. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Schmitz U., Freymann D. M., James T. L., Keenan R. J., Vinayak R., Walter P. NMR studies of the most conserved RNA domain of the mammalian signal recognition particle (SRP). RNA. 1996 Dec;2(12):1213–1227. [PMC free article] [PubMed] [Google Scholar]
- Schmitz U., James T. L., Lukavsky P., Walter P. Structure of the most conserved internal loop in SRP RNA. Nat Struct Biol. 1999 Jul;6(7):634–638. doi: 10.1038/10683. [DOI] [PubMed] [Google Scholar]
- Schmitz U., James T. L., Lukavsky P., Walter P. Structure of the most conserved internal loop in SRP RNA. Nat Struct Biol. 1999 Jul;6(7):634–638. doi: 10.1038/10683. [DOI] [PubMed] [Google Scholar]
- Ulbrandt N. D., Newitt J. A., Bernstein H. D. The E. coli signal recognition particle is required for the insertion of a subset of inner membrane proteins. Cell. 1997 Jan 24;88(2):187–196. doi: 10.1016/s0092-8674(00)81839-5. [DOI] [PubMed] [Google Scholar]
- Walter P., Johnson A. E. Signal sequence recognition and protein targeting to the endoplasmic reticulum membrane. Annu Rev Cell Biol. 1994;10:87–119. doi: 10.1146/annurev.cb.10.110194.000511. [DOI] [PubMed] [Google Scholar]
- Zheng N., Gierasch L. M. Domain interactions in E. coli SRP: stabilization of M domain by RNA is required for effective signal sequence modulation of NG domain. Mol Cell. 1997 Dec;1(1):79–87. doi: 10.1016/s1097-2765(00)80009-x. [DOI] [PubMed] [Google Scholar]