Abstract
Comparative sequence analysis complements experimental methods for the determination of RNA three-dimensional structure. This approach is based on the concept that different sequences within the same gene family form similar higher-order structures. The large number of rRNA sequences with sufficient variation, along with improved covariation algorithms, are providing us with the opportunity to identify new base triples in 16S rRNA. The three-dimensional conformations for one of our strongest candidates involving U121 (C124:G237) and/or U121 (U125:A236) (Escherichia coli sequence and numbering) are analyzed here with different molecular modeling tools. Molecular modeling shows that U121 interacts with C124 in the U121 (C124:G237) base triple. This arrangement maintains isomorphic structures for the three most frequent sequence motifs (approximately 93% of known bacterial and archaeal sequences), is consistent with chemical reactivity of U121 in E. coli ribosomes, and is geometrically favorable. Further, the restricted set of observed canonical (GU, AU, GC) base-pair types at positions 124:237 and 125:236 is consistent with the fact that the canonical base-pair sets (for both base pairs) that are not observed in nature prevent the formation of the 121 (124:237) base triple. The analysis described here serves as a general scheme for the prediction of specific secondary and tertiary structure base pairing where there is a network of correlated base changes.
Full Text
The Full Text of this article is available as a PDF (536.0 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Ban N., Freeborn B., Nissen P., Penczek P., Grassucci R. A., Sweet R., Frank J., Moore P. B., Steitz T. A. A 9 A resolution X-ray crystallographic map of the large ribosomal subunit. Cell. 1998 Jun 26;93(7):1105–1115. doi: 10.1016/s0092-8674(00)81455-5. [DOI] [PubMed] [Google Scholar]
- Basavappa R., Sigler P. B. The 3 A crystal structure of yeast initiator tRNA: functional implications in initiator/elongator discrimination. EMBO J. 1991 Oct;10(10):3105–3111. doi: 10.1002/j.1460-2075.1991.tb07864.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Brion P., Westhof E. Hierarchy and dynamics of RNA folding. Annu Rev Biophys Biomol Struct. 1997;26:113–137. doi: 10.1146/annurev.biophys.26.1.113. [DOI] [PubMed] [Google Scholar]
- Brosius J., Dull T. J., Sleeter D. D., Noller H. F. Gene organization and primary structure of a ribosomal RNA operon from Escherichia coli. J Mol Biol. 1981 May 15;148(2):107–127. doi: 10.1016/0022-2836(81)90508-8. [DOI] [PubMed] [Google Scholar]
- Cate J. H., Gooding A. R., Podell E., Zhou K., Golden B. L., Kundrot C. E., Cech T. R., Doudna J. A. Crystal structure of a group I ribozyme domain: principles of RNA packing. Science. 1996 Sep 20;273(5282):1678–1685. doi: 10.1126/science.273.5282.1678. [DOI] [PubMed] [Google Scholar]
- Conn G. L., Draper D. E., Lattman E. E., Gittis A. G. Crystal structure of a conserved ribosomal protein-RNA complex. Science. 1999 May 14;284(5417):1171–1174. doi: 10.1126/science.284.5417.1171. [DOI] [PubMed] [Google Scholar]
- Conn G. L., Gutell R. R., Draper D. E. A functional ribosomal RNA tertiary structure involves a base triple interaction. Biochemistry. 1998 Aug 25;37(34):11980–11988. doi: 10.1021/bi980825+. [DOI] [PubMed] [Google Scholar]
- Correll C. C., Freeborn B., Moore P. B., Steitz T. A. Metals, motifs, and recognition in the crystal structure of a 5S rRNA domain. Cell. 1997 Nov 28;91(5):705–712. doi: 10.1016/s0092-8674(00)80457-2. [DOI] [PubMed] [Google Scholar]
- Ferré-D'Amaré A. R., Zhou K., Doudna J. A. Crystal structure of a hepatitis delta virus ribozyme. Nature. 1998 Oct 8;395(6702):567–574. doi: 10.1038/26912. [DOI] [PubMed] [Google Scholar]
- Gautheret D., Damberger S. H., Gutell R. R. Identification of base-triples in RNA using comparative sequence analysis. J Mol Biol. 1995 Apr 21;248(1):27–43. doi: 10.1006/jmbi.1995.0200. [DOI] [PubMed] [Google Scholar]
- Gautheret D., Gutell R. R. Inferring the conformation of RNA base pairs and triples from patterns of sequence variation. Nucleic Acids Res. 1997 Apr 15;25(8):1559–1564. doi: 10.1093/nar/25.8.1559. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Gautheret D., Major F., Cedergren R. Modeling the three-dimensional structure of RNA using discrete nucleotide conformational sets. J Mol Biol. 1993 Feb 20;229(4):1049–1064. doi: 10.1006/jmbi.1993.1104. [DOI] [PubMed] [Google Scholar]
- Golden B. L., Gooding A. R., Podell E. R., Cech T. R. A preorganized active site in the crystal structure of the Tetrahymena ribozyme. Science. 1998 Oct 9;282(5387):259–264. doi: 10.1126/science.282.5387.259. [DOI] [PubMed] [Google Scholar]
- Green R., Noller H. F. Ribosomes and translation. Annu Rev Biochem. 1997;66:679–716. doi: 10.1146/annurev.biochem.66.1.679. [DOI] [PubMed] [Google Scholar]
- Gutell R. R., Noller H. F., Woese C. R. Higher order structure in ribosomal RNA. EMBO J. 1986 May;5(5):1111–1113. doi: 10.1002/j.1460-2075.1986.tb04330.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Gutell R. R., Power A., Hertz G. Z., Putz E. J., Stormo G. D. Identifying constraints on the higher-order structure of RNA: continued development and application of comparative sequence analysis methods. Nucleic Acids Res. 1992 Nov 11;20(21):5785–5795. doi: 10.1093/nar/20.21.5785. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kalurachchi K., Nikonowicz E. P. NMR structure determination of the binding site for ribosomal protein S8 from Escherichia coli 16 S rRNA. J Mol Biol. 1998 Jul 24;280(4):639–654. doi: 10.1006/jmbi.1998.1915. [DOI] [PubMed] [Google Scholar]
- Kim S. H., Quigley G. J., Suddath F. L., McPherson A., Sneden D., Kim J. J., Weinzierl J., Rich A. Three-dimensional structure of yeast phenylalanine transfer RNA: folding of the polynucleotide chain. Science. 1973 Jan 19;179(4070):285–288. doi: 10.1126/science.179.4070.285. [DOI] [PubMed] [Google Scholar]
- Klug A., Ladner J., Robertus J. D. The structural geometry of co-ordinated base changes in transfer RNA. J Mol Biol. 1974 Nov 5;89(3):511–516. doi: 10.1016/0022-2836(74)90480-x. [DOI] [PubMed] [Google Scholar]
- Leontis N. B., Westhof E. The 5S rRNA loop E: chemical probing and phylogenetic data versus crystal structure. RNA. 1998 Sep;4(9):1134–1153. doi: 10.1017/s1355838298980566. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Maidak B. L., Cole J. R., Parker C. T., Jr, Garrity G. M., Larsen N., Li B., Lilburn T. G., McCaughey M. J., Olsen G. J., Overbeek R. A new version of the RDP (Ribosomal Database Project). Nucleic Acids Res. 1999 Jan 1;27(1):171–173. doi: 10.1093/nar/27.1.171. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Major F., Gautheret D., Cedergren R. Reproducing the three-dimensional structure of a tRNA molecule from structural constraints. Proc Natl Acad Sci U S A. 1993 Oct 15;90(20):9408–9412. doi: 10.1073/pnas.90.20.9408. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Major F., Turcotte M., Gautheret D., Lapalme G., Fillion E., Cedergren R. The combination of symbolic and numerical computation for three-dimensional modeling of RNA. Science. 1991 Sep 13;253(5025):1255–1260. doi: 10.1126/science.1716375. [DOI] [PubMed] [Google Scholar]
- Michel F., Ellington A. D., Couture S., Szostak J. W. Phylogenetic and genetic evidence for base-triples in the catalytic domain of group I introns. Nature. 1990 Oct 11;347(6293):578–580. doi: 10.1038/347578a0. [DOI] [PubMed] [Google Scholar]
- Michel F., Westhof E. Modelling of the three-dimensional architecture of group I catalytic introns based on comparative sequence analysis. J Mol Biol. 1990 Dec 5;216(3):585–610. doi: 10.1016/0022-2836(90)90386-Z. [DOI] [PubMed] [Google Scholar]
- Moazed D., Stern S., Noller H. F. Rapid chemical probing of conformation in 16 S ribosomal RNA and 30 S ribosomal subunits using primer extension. J Mol Biol. 1986 Feb 5;187(3):399–416. doi: 10.1016/0022-2836(86)90441-9. [DOI] [PubMed] [Google Scholar]
- Penczek P. A., Grassucci R. A., Frank J. The ribosome at improved resolution: new techniques for merging and orientation refinement in 3D cryo-electron microscopy of biological particles. Ultramicroscopy. 1994 Mar;53(3):251–270. doi: 10.1016/0304-3991(94)90038-8. [DOI] [PubMed] [Google Scholar]
- Pley H. W., Flaherty K. M., McKay D. B. Three-dimensional structure of a hammerhead ribozyme. Nature. 1994 Nov 3;372(6501):68–74. doi: 10.1038/372068a0. [DOI] [PubMed] [Google Scholar]
- Svergun D. I., Burkhardt N., Pedersen J. S., Koch M. H., Volkov V. V., Kozin M. B., Meerwink W., Stuhrmann H. B., Diedrich G., Nierhaus K. H. Solution scattering structural analysis of the 70 S Escherichia coli ribosome by contrast variation. I. Invariants and validation of electron microscopy models. J Mol Biol. 1997 Aug 29;271(4):588–601. doi: 10.1006/jmbi.1997.1190. [DOI] [PubMed] [Google Scholar]
- Uhlenbeck O. C., Pardi A., Feigon J. RNA structure comes of age. Cell. 1997 Sep 5;90(5):833–840. doi: 10.1016/s0092-8674(00)80348-7. [DOI] [PubMed] [Google Scholar]
- Watson C. G. Resection of the Caecum and Ascending Colon, showing Chronic Hypertrophy of the Mucous Membrane, with Stenosis simulating Cancer. Proc R Soc Med. 1911;4(PATHOL):237–241. doi: 10.1177/003591571100401116. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Woese C. R., Magrum L. J., Gupta R., Siegel R. B., Stahl D. A., Kop J., Crawford N., Brosius J., Gutell R., Hogan J. J. Secondary structure model for bacterial 16S ribosomal RNA: phylogenetic, enzymatic and chemical evidence. Nucleic Acids Res. 1980 May 24;8(10):2275–2293. doi: 10.1093/nar/8.10.2275. [DOI] [PMC free article] [PubMed] [Google Scholar]
- von Böhlen K., Makowski I., Hansen H. A., Bartels H., Berkovitch-Yellin Z., Zaytzev-Bashan A., Meyer S., Paulke C., Franceschi F., Yonath A. Characterization and preliminary attempts for derivatization of crystals of large ribosomal subunits from Haloarcula marismortui diffracting to 3 A resolution. J Mol Biol. 1991 Nov 5;222(1):11–15. doi: 10.1016/0022-2836(91)90730-t. [DOI] [PubMed] [Google Scholar]
