Skip to main content
RNA logoLink to RNA
. 1999 Nov;5(11):1482–1489. doi: 10.1017/s1355838299991264

A tiny RNA that catalyzes both aminoacyl-RNA and peptidyl-RNA synthesis.

M Illangasekare 1, M Yarus 1
PMCID: PMC1369869  PMID: 10580476

Abstract

A 29-nt RNA catalyst successively forms the aminoacyl ester phe-RNA, and then peptidyl-RNA (phe-phe-RNA), given phenylalanine adenylate (phe-AMP) as substrate. Catalysis of two related reactions at similar rates supports the argument that RNA catalysts would evolve as groups with similar mechanisms. In particular, successive aminoacyl- and peptidyl-RNA synthesis by one RNA suggests that uncoded but RNA-catalyzed peptide synthesis would evolve before the synthesis of coded peptides.

Full Text

The Full Text of this article is available as a PDF (723.1 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Ciesiolka J., Illangasekare M., Majerfeld I., Nickles T., Welch M., Yarus M., Zinnen S. Affinity selection-amplification from randomized ribooligonucleotide pools. Methods Enzymol. 1996;267:315–335. doi: 10.1016/s0076-6879(96)67021-9. [DOI] [PubMed] [Google Scholar]
  2. Gottikh B. P., Krayevsky A. A., Tarussova N. B., Purygin P. P., Tsilevich T. L. The general synthetic route to amino acid esters of nucleotides and nucleoside-5'-triphosphates and some properties of these compounds. Tetrahedron. 1970 Sep;26(18):4419–4433. doi: 10.1016/s0040-4020(01)93090-x. [DOI] [PubMed] [Google Scholar]
  3. Illangasekare M., Kovalchuke O., Yarus M. Essential structures of a self-aminoacylating RNA. J Mol Biol. 1997 Dec 12;274(4):519–529. doi: 10.1006/jmbi.1997.1414. [DOI] [PubMed] [Google Scholar]
  4. Illangasekare M., Sanchez G., Nickles T., Yarus M. Aminoacyl-RNA synthesis catalyzed by an RNA. Science. 1995 Feb 3;267(5198):643–647. doi: 10.1126/science.7530860. [DOI] [PubMed] [Google Scholar]
  5. Illangasekare M., Yarus M. Small-molecule-substrate interactions with a self-aminoacylating ribozyme. J Mol Biol. 1997 May 9;268(3):631–639. doi: 10.1006/jmbi.1997.0988. [DOI] [PubMed] [Google Scholar]
  6. Illangasekare M., Yarus M. Specific, rapid synthesis of Phe-RNA by RNA. Proc Natl Acad Sci U S A. 1999 May 11;96(10):5470–5475. doi: 10.1073/pnas.96.10.5470. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Lohse P. A., Szostak J. W. Ribozyme-catalysed amino-acid transfer reactions. Nature. 1996 May 30;381(6581):442–444. doi: 10.1038/381442a0. [DOI] [PubMed] [Google Scholar]
  8. Nakajima H., Kitabatake S., Tsurutani R., Yamamoto K., Tomioka I., Imahori K. Dipeptide synthesis catalyzed by aminoacyl-tRNA synthetases from Bacillus stearothermophilus. Int J Pept Protein Res. 1986 Aug;28(2):179–185. doi: 10.1111/j.1399-3011.1986.tb03245.x. [DOI] [PubMed] [Google Scholar]
  9. Orgel L. E. The origin of polynucleotide-directed protein synthesis. J Mol Evol. 1989 Dec;29(6):465–474. doi: 10.1007/BF02602917. [DOI] [PubMed] [Google Scholar]
  10. Schofield P., Zamecnik P. C. Cupric ion catalysis in hydrolysis of aminoacyl-tRNA. Biochim Biophys Acta. 1968 Feb 26;155(2):410–416. doi: 10.1016/0005-2787(68)90185-8. [DOI] [PubMed] [Google Scholar]
  11. Weber A. L., Orgel L. E. The formation of dipeptides from amino acids and the 2'(3')-glycyl ester of an adenylate. J Mol Evol. 1979 Oct;13(3):185–192. doi: 10.1007/BF01739478. [DOI] [PubMed] [Google Scholar]
  12. Yarus M. Boundaries for an RNA world. Curr Opin Chem Biol. 1999 Jun;3(3):260–267. doi: 10.1016/S1367-5931(99)80041-6. [DOI] [PubMed] [Google Scholar]

Articles from RNA are provided here courtesy of The RNA Society

RESOURCES