Abstract
A 29-nt RNA catalyst successively forms the aminoacyl ester phe-RNA, and then peptidyl-RNA (phe-phe-RNA), given phenylalanine adenylate (phe-AMP) as substrate. Catalysis of two related reactions at similar rates supports the argument that RNA catalysts would evolve as groups with similar mechanisms. In particular, successive aminoacyl- and peptidyl-RNA synthesis by one RNA suggests that uncoded but RNA-catalyzed peptide synthesis would evolve before the synthesis of coded peptides.
Full Text
The Full Text of this article is available as a PDF (723.1 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Ciesiolka J., Illangasekare M., Majerfeld I., Nickles T., Welch M., Yarus M., Zinnen S. Affinity selection-amplification from randomized ribooligonucleotide pools. Methods Enzymol. 1996;267:315–335. doi: 10.1016/s0076-6879(96)67021-9. [DOI] [PubMed] [Google Scholar]
- Gottikh B. P., Krayevsky A. A., Tarussova N. B., Purygin P. P., Tsilevich T. L. The general synthetic route to amino acid esters of nucleotides and nucleoside-5'-triphosphates and some properties of these compounds. Tetrahedron. 1970 Sep;26(18):4419–4433. doi: 10.1016/s0040-4020(01)93090-x. [DOI] [PubMed] [Google Scholar]
- Illangasekare M., Kovalchuke O., Yarus M. Essential structures of a self-aminoacylating RNA. J Mol Biol. 1997 Dec 12;274(4):519–529. doi: 10.1006/jmbi.1997.1414. [DOI] [PubMed] [Google Scholar]
- Illangasekare M., Sanchez G., Nickles T., Yarus M. Aminoacyl-RNA synthesis catalyzed by an RNA. Science. 1995 Feb 3;267(5198):643–647. doi: 10.1126/science.7530860. [DOI] [PubMed] [Google Scholar]
- Illangasekare M., Yarus M. Small-molecule-substrate interactions with a self-aminoacylating ribozyme. J Mol Biol. 1997 May 9;268(3):631–639. doi: 10.1006/jmbi.1997.0988. [DOI] [PubMed] [Google Scholar]
- Illangasekare M., Yarus M. Specific, rapid synthesis of Phe-RNA by RNA. Proc Natl Acad Sci U S A. 1999 May 11;96(10):5470–5475. doi: 10.1073/pnas.96.10.5470. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lohse P. A., Szostak J. W. Ribozyme-catalysed amino-acid transfer reactions. Nature. 1996 May 30;381(6581):442–444. doi: 10.1038/381442a0. [DOI] [PubMed] [Google Scholar]
- Nakajima H., Kitabatake S., Tsurutani R., Yamamoto K., Tomioka I., Imahori K. Dipeptide synthesis catalyzed by aminoacyl-tRNA synthetases from Bacillus stearothermophilus. Int J Pept Protein Res. 1986 Aug;28(2):179–185. doi: 10.1111/j.1399-3011.1986.tb03245.x. [DOI] [PubMed] [Google Scholar]
- Orgel L. E. The origin of polynucleotide-directed protein synthesis. J Mol Evol. 1989 Dec;29(6):465–474. doi: 10.1007/BF02602917. [DOI] [PubMed] [Google Scholar]
- Schofield P., Zamecnik P. C. Cupric ion catalysis in hydrolysis of aminoacyl-tRNA. Biochim Biophys Acta. 1968 Feb 26;155(2):410–416. doi: 10.1016/0005-2787(68)90185-8. [DOI] [PubMed] [Google Scholar]
- Weber A. L., Orgel L. E. The formation of dipeptides from amino acids and the 2'(3')-glycyl ester of an adenylate. J Mol Evol. 1979 Oct;13(3):185–192. doi: 10.1007/BF01739478. [DOI] [PubMed] [Google Scholar]
- Yarus M. Boundaries for an RNA world. Curr Opin Chem Biol. 1999 Jun;3(3):260–267. doi: 10.1016/S1367-5931(99)80041-6. [DOI] [PubMed] [Google Scholar]
