Skip to main content
RNA logoLink to RNA
. 1999 Nov;5(11):1490–1494. doi: 10.1017/s1355838299991586

The relationship of thermodynamic stability at a G x U recognition site to tRNA aminoacylation specificity.

P Strazewski 1, E Biala 1, K Gabriel 1, W H McClain 1
PMCID: PMC1369870  PMID: 10580477

Abstract

The G x U pair at the third position in the acceptor helix of Escherichia coli tRNA(Ala) is critical for aminoacylation. The features that allow G x U recognition are likely to include direct interaction of alanyl-tRNA synthetase with distinctive atomic groups and indirect recognition of the structural and stability information encoded in the sequence of G x U and its immediate context. The present work investigates the thermodynamic stability and acceptor activity for a comprehensive set of variant RNAs with substitutions of the G x U pair of E. coli tRNA(Ala). The four RNAs with Watson-Crick substitutions had a lower acceptor activity and a higher stability relative to the G x U RNA. On the other hand, the RNAs with mispair substitutions had a lower stability, but either a higher or a lower acceptor activity. Thus, the entire set of variant RNAs does not exhibit a correlation between thermodynamic stability of the free, unbound tRNA and its acceptor activity. The substantial acceptor activity of tRNAs with particular mispair substitutions may be explained by their ability to assume the conformational preferences of alanyl-tRNA synthetase. Moreover, the G x U pair may provide a point of deformability for the substrate tRNA to adapt to the enzyme's active site.

Full Text

The Full Text of this article is available as a PDF (358.5 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Auffinger P., Westhof E. Hydration of RNA base pairs. J Biomol Struct Dyn. 1998 Dec;16(3):693–707. doi: 10.1080/07391102.1998.10508281. [DOI] [PubMed] [Google Scholar]
  2. Beuning P. J., Yang F., Schimmel P., Musier-Forsyth K. Specific atomic groups and RNA helix geometry in acceptor stem recognition by a tRNA synthetase. Proc Natl Acad Sci U S A. 1997 Sep 16;94(19):10150–10154. doi: 10.1073/pnas.94.19.10150. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Bénard L., Mathy N., Grunberg-Manago M., Ehresmann B., Ehresmann C., Portier C. Identification in a pseudoknot of a U.G motif essential for the regulation of the expression of ribosomal protein S15. Proc Natl Acad Sci U S A. 1998 Mar 3;95(5):2564–2567. doi: 10.1073/pnas.95.5.2564. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Cavarelli J., Moras D. Recognition of tRNAs by aminoacyl-tRNA synthetases. FASEB J. 1993 Jan;7(1):79–86. doi: 10.1096/fasebj.7.1.8422978. [DOI] [PubMed] [Google Scholar]
  5. Cusack S. Aminoacyl-tRNA synthetases. Curr Opin Struct Biol. 1997 Dec;7(6):881–889. doi: 10.1016/s0959-440x(97)80161-3. [DOI] [PubMed] [Google Scholar]
  6. Doudna J. A., Cormack B. P., Szostak J. W. RNA structure, not sequence, determines the 5' splice-site specificity of a group I intron. Proc Natl Acad Sci U S A. 1989 Oct;86(19):7402–7406. doi: 10.1073/pnas.86.19.7402. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Francklyn C., Schimmel P. Aminoacylation of RNA minihelices with alanine. Nature. 1989 Feb 2;337(6206):478–481. doi: 10.1038/337478a0. [DOI] [PubMed] [Google Scholar]
  8. Gabriel K., Schneider J., McClain W. H. Functional evidence for indirect recognition of G.U in tRNA(Ala) by alanyl-tRNA synthetase. Science. 1996 Jan 12;271(5246):195–197. doi: 10.1126/science.271.5246.195. [DOI] [PubMed] [Google Scholar]
  9. Hou Y. M., Schimmel P. A simple structural feature is a major determinant of the identity of a transfer RNA. Nature. 1988 May 12;333(6169):140–145. doi: 10.1038/333140a0. [DOI] [PubMed] [Google Scholar]
  10. Li B., Vilardell J., Warner J. R. An RNA structure involved in feedback regulation of splicing and of translation is critical for biological fitness. Proc Natl Acad Sci U S A. 1996 Feb 20;93(4):1596–1600. doi: 10.1073/pnas.93.4.1596. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Limmer S., Hofmann H. P., Ott G., Sprinzl M. The 3'-terminal end (NCCA) of tRNA determines the structure and stability of the aminoacyl acceptor stem. Proc Natl Acad Sci U S A. 1993 Jul 1;90(13):6199–6202. doi: 10.1073/pnas.90.13.6199. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Masquida B., Sauter C., Westhof E. A sulfate pocket formed by three GoU pairs in the 0.97 A resolution X-ray structure of a nonameric RNA. RNA. 1999 Oct;5(10):1384–1395. doi: 10.1017/s1355838299991173. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. McClain W. H., Chen Y. M., Foss K., Schneider J. Association of transfer RNA acceptor identity with a helical irregularity. Science. 1988 Dec 23;242(4886):1681–1684. doi: 10.1126/science.2462282. [DOI] [PubMed] [Google Scholar]
  14. McClain W. H., Foss K. Changing the identity of a tRNA by introducing a G-U wobble pair near the 3' acceptor end. Science. 1988 May 6;240(4853):793–796. doi: 10.1126/science.2452483. [DOI] [PubMed] [Google Scholar]
  15. McClain W. H., Jou Y. Y., Bhattacharya S., Gabriel K., Schneider J. The reliability of in vivo structure-function analysis of tRNA aminoacylation. J Mol Biol. 1999 Jul 9;290(2):391–409. doi: 10.1006/jmbi.1999.2884. [DOI] [PubMed] [Google Scholar]
  16. Meroueh M., Chow C. S. Thermodynamics of RNA hairpins containing single internal mismatches. Nucleic Acids Res. 1999 Feb 15;27(4):1118–1125. doi: 10.1093/nar/27.4.1118. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Mueller U., Schübel H., Sprinzl M., Heinemann U. Crystal structure of acceptor stem of tRNA(Ala) from Escherichia coli shows unique G.U wobble base pair at 1.16 A resolution. RNA. 1999 May;5(5):670–677. doi: 10.1017/s1355838299982304. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Ramos A., Varani G. Structure of the acceptor stem of Escherichia coli tRNA Ala: role of the G3.U70 base pair in synthetase recognition. Nucleic Acids Res. 1997 Jun 1;25(11):2083–2090. doi: 10.1093/nar/25.11.2083. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from RNA are provided here courtesy of The RNA Society

RESOURCES