Skip to main content
RNA logoLink to RNA
. 1999 Dec;5(12):1535–1547. doi: 10.1017/s1355838299991392

Smaug, a novel and conserved protein, contributes to repression of nanos mRNA translation in vitro.

C A Smibert 1, Y S Lie 1, W Shillinglaw 1, W J Henzel 1, P M Macdonald 1
PMCID: PMC1369876  PMID: 10606265

Abstract

Proper deployment of Nanos protein at the posterior of the Drosophila embryo, where it directs posterior development, requires a combination of RNA localization and translational controls. These controls ensure that only the posteriorly-localized nanos mRNA is translated, whereas unlocalized nanos mRNA is translationally repressed. Here we describe cloning of the gene encoding Smaug, an RNA-binding protein that interacts with the sequences, SREs, in the nanos mRNA that mediate translational repression. Using an in vitro translation assay, we demonstrate that SRE-dependent repression occurs in extracts from early stage embryos. Immunodepletion of Smaug from the extracts eliminates repression, consistent with the notion that Smaug is involved. Smaug is a novel gene and the existence of potential mammalian Smaug homologs raises the possibility that Smaug represents a new class of conserved translational repressor.

Full Text

The Full Text of this article is available as a PDF (910.4 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Arnott D., Henzel W. J., Stults J. T. Rapid identification of comigrating gel-isolated proteins by ion trap-mass spectrometry. Electrophoresis. 1998 May;19(6):968–980. doi: 10.1002/elps.1150190612. [DOI] [PubMed] [Google Scholar]
  2. Arnott D., O'Connell K. L., King K. L., Stults J. T. An integrated approach to proteome analysis: identification of proteins associated with cardiac hypertrophy. Anal Biochem. 1998 Apr 10;258(1):1–18. doi: 10.1006/abio.1998.2566. [DOI] [PubMed] [Google Scholar]
  3. Bashaw G. J., Baker B. S. The regulation of the Drosophila msl-2 gene reveals a function for Sex-lethal in translational control. Cell. 1997 May 30;89(5):789–798. doi: 10.1016/s0092-8674(00)80262-7. [DOI] [PubMed] [Google Scholar]
  4. Bashirullah A., Cooperstock R. L., Lipshitz H. D. RNA localization in development. Annu Rev Biochem. 1998;67:335–394. doi: 10.1146/annurev.biochem.67.1.335. [DOI] [PubMed] [Google Scholar]
  5. Bergsten S. E., Gavis E. R. Role for mRNA localization in translational activation but not spatial restriction of nanos RNA. Development. 1999 Feb;126(4):659–669. doi: 10.1242/dev.126.4.659. [DOI] [PubMed] [Google Scholar]
  6. Bouvet P., Omilli F., Arlot-Bonnemains Y., Legagneux V., Roghi C., Bassez T., Osborne H. B. The deadenylation conferred by the 3' untranslated region of a developmentally controlled mRNA in Xenopus embryos is switched to polyadenylation by deletion of a short sequence element. Mol Cell Biol. 1994 Mar;14(3):1893–1900. doi: 10.1128/mcb.14.3.1893. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Burd C. G., Dreyfuss G. Conserved structures and diversity of functions of RNA-binding proteins. Science. 1994 Jul 29;265(5172):615–621. doi: 10.1126/science.8036511. [DOI] [PubMed] [Google Scholar]
  8. Curtis D., Lehmann R., Zamore P. D. Translational regulation in development. Cell. 1995 Apr 21;81(2):171–178. doi: 10.1016/0092-8674(95)90325-9. [DOI] [PubMed] [Google Scholar]
  9. Dahanukar A., Walker J. A., Wharton R. P. Smaug, a novel RNA-binding protein that operates a translational switch in Drosophila. Mol Cell. 1999 Aug;4(2):209–218. doi: 10.1016/s1097-2765(00)80368-8. [DOI] [PubMed] [Google Scholar]
  10. Dahanukar A., Wharton R. P. The Nanos gradient in Drosophila embryos is generated by translational regulation. Genes Dev. 1996 Oct 15;10(20):2610–2620. doi: 10.1101/gad.10.20.2610. [DOI] [PubMed] [Google Scholar]
  11. Dubnau J., Struhl G. RNA recognition and translational regulation by a homeodomain protein. Nature. 1996 Feb 22;379(6567):694–699. doi: 10.1038/379694a0. [DOI] [PubMed] [Google Scholar]
  12. Ephrussi A., Dickinson L. K., Lehmann R. Oskar organizes the germ plasm and directs localization of the posterior determinant nanos. Cell. 1991 Jul 12;66(1):37–50. doi: 10.1016/0092-8674(91)90137-n. [DOI] [PubMed] [Google Scholar]
  13. Fox C. A., Sheets M. D., Wickens M. P. Poly(A) addition during maturation of frog oocytes: distinct nuclear and cytoplasmic activities and regulation by the sequence UUUUUAU. Genes Dev. 1989 Dec;3(12B):2151–2162. doi: 10.1101/gad.3.12b.2151. [DOI] [PubMed] [Google Scholar]
  14. Frohnhöfer H. G., Lehmann R., Nüsslein-Volhard C. Manipulating the anteroposterior pattern of the Drosophila embryo. J Embryol Exp Morphol. 1986 Oct;97 (Suppl):169–179. [PubMed] [Google Scholar]
  15. Gavis E. R., Curtis D., Lehmann R. Identification of cis-acting sequences that control nanos RNA localization. Dev Biol. 1996 May 25;176(1):36–50. doi: 10.1006/dbio.1996.9996. [DOI] [PubMed] [Google Scholar]
  16. Gavis E. R., Lehmann R. Localization of nanos RNA controls embryonic polarity. Cell. 1992 Oct 16;71(2):301–313. doi: 10.1016/0092-8674(92)90358-j. [DOI] [PubMed] [Google Scholar]
  17. Gavis E. R., Lehmann R. Translational regulation of nanos by RNA localization. Nature. 1994 May 26;369(6478):315–318. doi: 10.1038/369315a0. [DOI] [PubMed] [Google Scholar]
  18. Gavis E. R., Lunsford L., Bergsten S. E., Lehmann R. A conserved 90 nucleotide element mediates translational repression of nanos RNA. Development. 1996 Sep;122(9):2791–2800. doi: 10.1242/dev.122.9.2791. [DOI] [PubMed] [Google Scholar]
  19. Hake L. E., Richter J. D. CPEB is a specificity factor that mediates cytoplasmic polyadenylation during Xenopus oocyte maturation. Cell. 1994 Nov 18;79(4):617–627. doi: 10.1016/0092-8674(94)90547-9. [DOI] [PubMed] [Google Scholar]
  20. Henzel W. J., Billeci T. M., Stults J. T., Wong S. C., Grimley C., Watanabe C. Identifying proteins from two-dimensional gels by molecular mass searching of peptide fragments in protein sequence databases. Proc Natl Acad Sci U S A. 1993 Jun 1;90(11):5011–5015. doi: 10.1073/pnas.90.11.5011. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Henzel W. J., Rodriguez H., Watanabe C. Computer analysis of automated Edman degradation and amino acid analysis data. J Chromatogr. 1987 Aug 28;404(1):41–52. doi: 10.1016/s0021-9673(01)86835-7. [DOI] [PubMed] [Google Scholar]
  22. Iizuka N., Sarnow P. Translation-competent extracts from Saccharomyces cerevisiae: effects of L-A RNA, 5' cap, and 3' poly(A) tail on translational efficiency of mRNAs. Methods. 1997 Apr;11(4):353–360. doi: 10.1006/meth.1996.0433. [DOI] [PubMed] [Google Scholar]
  23. Illmensee K., Mahowald A. P. Transplantation of posterior polar plasm in Drosophila. Induction of germ cells at the anterior pole of the egg. Proc Natl Acad Sci U S A. 1974 Apr;71(4):1016–1020. doi: 10.1073/pnas.71.4.1016. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Jan E., Motzny C. K., Graves L. E., Goodwin E. B. The STAR protein, GLD-1, is a translational regulator of sexual identity in Caenorhabditis elegans. EMBO J. 1999 Jan 4;18(1):258–269. doi: 10.1093/emboj/18.1.258. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Kim-Ha J., Kerr K., Macdonald P. M. Translational regulation of oskar mRNA by bruno, an ovarian RNA-binding protein, is essential. Cell. 1995 May 5;81(3):403–412. doi: 10.1016/0092-8674(95)90393-3. [DOI] [PubMed] [Google Scholar]
  26. Kim-Ha J., Smith J. L., Macdonald P. M. oskar mRNA is localized to the posterior pole of the Drosophila oocyte. Cell. 1991 Jul 12;66(1):23–35. doi: 10.1016/0092-8674(91)90136-m. [DOI] [PubMed] [Google Scholar]
  27. Kim-Ha J., Webster P. J., Smith J. L., Macdonald P. M. Multiple RNA regulatory elements mediate distinct steps in localization of oskar mRNA. Development. 1993 Sep;119(1):169–178. doi: 10.1242/dev.119.1.169. [DOI] [PubMed] [Google Scholar]
  28. Krutzsch H. C., Inman J. K. N-isopropyliodoacetamide in the reduction and alkylation of proteins: use in microsequence analysis. Anal Biochem. 1993 Feb 15;209(1):109–116. doi: 10.1006/abio.1993.1089. [DOI] [PubMed] [Google Scholar]
  29. Lui M., Tempst P., Erdjument-Bromage H. Methodical analysis of protein-nitrocellulose interactions to design a refined digestion protocol. Anal Biochem. 1996 Oct 15;241(2):156–166. doi: 10.1006/abio.1996.0393. [DOI] [PubMed] [Google Scholar]
  30. MacDonald P. M., Leask A., Kerr K. exl protein specifically binds BLE1, a bicoid mRNA localization element, and is required for one phase of its activity. Proc Natl Acad Sci U S A. 1995 Nov 7;92(23):10787–10791. doi: 10.1073/pnas.92.23.10787. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Macdonald P. M., Luk S. K., Kilpatrick M. Protein encoded by the exuperantia gene is concentrated at sites of bicoid mRNA accumulation in Drosophila nurse cells but not in oocytes or embryos. Genes Dev. 1991 Dec;5(12B):2455–2466. doi: 10.1101/gad.5.12b.2455. [DOI] [PubMed] [Google Scholar]
  32. Macdonald P. M., Smibert C. A. Translational regulation of maternal mRNAs. Curr Opin Genet Dev. 1996 Aug;6(4):403–407. doi: 10.1016/s0959-437x(96)80060-8. [DOI] [PubMed] [Google Scholar]
  33. Matsudaira P. Sequence from picomole quantities of proteins electroblotted onto polyvinylidene difluoride membranes. J Biol Chem. 1987 Jul 25;262(21):10035–10038. [PubMed] [Google Scholar]
  34. McGrew L. L., Dworkin-Rastl E., Dworkin M. B., Richter J. D. Poly(A) elongation during Xenopus oocyte maturation is required for translational recruitment and is mediated by a short sequence element. Genes Dev. 1989 Jun;3(6):803–815. doi: 10.1101/gad.3.6.803. [DOI] [PubMed] [Google Scholar]
  35. Murata Y., Wharton R. P. Binding of pumilio to maternal hunchback mRNA is required for posterior patterning in Drosophila embryos. Cell. 1995 Mar 10;80(5):747–756. doi: 10.1016/0092-8674(95)90353-4. [DOI] [PubMed] [Google Scholar]
  36. Ostareck-Lederer A., Ostareck D. H., Standart N., Thiele B. J. Translation of 15-lipoxygenase mRNA is inhibited by a protein that binds to a repeated sequence in the 3' untranslated region. EMBO J. 1994 Mar 15;13(6):1476–1481. doi: 10.1002/j.1460-2075.1994.tb06402.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Ostareck D. H., Ostareck-Lederer A., Wilm M., Thiele B. J., Mann M., Hentze M. W. mRNA silencing in erythroid differentiation: hnRNP K and hnRNP E1 regulate 15-lipoxygenase translation from the 3' end. Cell. 1997 May 16;89(4):597–606. doi: 10.1016/s0092-8674(00)80241-x. [DOI] [PubMed] [Google Scholar]
  38. Rivera-Pomar R., Niessing D., Schmidt-Ott U., Gehring W. J., Jäckle H. RNA binding and translational suppression by bicoid. Nature. 1996 Feb 22;379(6567):746–749. doi: 10.1038/379746a0. [DOI] [PubMed] [Google Scholar]
  39. Sallés F. J., Darrow A. L., O'Connell M. L., Strickland S. Isolation of novel murine maternal mRNAs regulated by cytoplasmic polyadenylation. Genes Dev. 1992 Jul;6(7):1202–1212. doi: 10.1101/gad.6.7.1202. [DOI] [PubMed] [Google Scholar]
  40. Sallés F. J., Lieberfarb M. E., Wreden C., Gergen J. P., Strickland S. Coordinate initiation of Drosophila development by regulated polyadenylation of maternal messenger RNAs. Science. 1994 Dec 23;266(5193):1996–1999. doi: 10.1126/science.7801127. [DOI] [PubMed] [Google Scholar]
  41. Sampson J. R., Saks M. E. Contributions of discrete tRNA(Ser) domains to aminoacylation by E.coli seryl-tRNA synthetase: a kinetic analysis using model RNA substrates. Nucleic Acids Res. 1993 Sep 25;21(19):4467–4475. doi: 10.1093/nar/21.19.4467. [DOI] [PMC free article] [PubMed] [Google Scholar]
  42. Schultz J., Ponting C. P., Hofmann K., Bork P. SAM as a protein interaction domain involved in developmental regulation. Protein Sci. 1997 Jan;6(1):249–253. doi: 10.1002/pro.5560060128. [DOI] [PMC free article] [PubMed] [Google Scholar]
  43. Shaffer C. D., Wuller J. M., Elgin S. C. Raising large quantities of Drosophila for biochemical experiments. Methods Cell Biol. 1994;44:99–108. doi: 10.1016/s0091-679x(08)60908-5. [DOI] [PubMed] [Google Scholar]
  44. Sheets M. D., Fox C. A., Hunt T., Vande Woude G., Wickens M. The 3'-untranslated regions of c-mos and cyclin mRNAs stimulate translation by regulating cytoplasmic polyadenylation. Genes Dev. 1994 Apr 15;8(8):926–938. doi: 10.1101/gad.8.8.926. [DOI] [PubMed] [Google Scholar]
  45. Shevchenko A., Wilm M., Vorm O., Mann M. Mass spectrometric sequencing of proteins silver-stained polyacrylamide gels. Anal Chem. 1996 Mar 1;68(5):850–858. doi: 10.1021/ac950914h. [DOI] [PubMed] [Google Scholar]
  46. Simon R., Richter J. D. Further analysis of cytoplasmic polyadenylation in Xenopus embryos and identification of embryonic cytoplasmic polyadenylation element-binding proteins. Mol Cell Biol. 1994 Dec;14(12):7867–7875. doi: 10.1128/mcb.14.12.7867. [DOI] [PMC free article] [PubMed] [Google Scholar]
  47. Smibert C. A., Wilson J. E., Kerr K., Macdonald P. M. smaug protein represses translation of unlocalized nanos mRNA in the Drosophila embryo. Genes Dev. 1996 Oct 15;10(20):2600–2609. doi: 10.1101/gad.10.20.2600. [DOI] [PubMed] [Google Scholar]
  48. St Johnston D. The intracellular localization of messenger RNAs. Cell. 1995 Apr 21;81(2):161–170. doi: 10.1016/0092-8674(95)90324-0. [DOI] [PubMed] [Google Scholar]
  49. Stein E., Lane A. A., Cerretti D. P., Schoecklmann H. O., Schroff A. D., Van Etten R. L., Daniel T. O. Eph receptors discriminate specific ligand oligomers to determine alternative signaling complexes, attachment, and assembly responses. Genes Dev. 1998 Mar 1;12(5):667–678. doi: 10.1101/gad.12.5.667. [DOI] [PMC free article] [PubMed] [Google Scholar]
  50. Tarun S. Z., Jr, Sachs A. B. A common function for mRNA 5' and 3' ends in translation initiation in yeast. Genes Dev. 1995 Dec 1;9(23):2997–3007. doi: 10.1101/gad.9.23.2997. [DOI] [PubMed] [Google Scholar]
  51. Tautz D., Pfeifle C. A non-radioactive in situ hybridization method for the localization of specific RNAs in Drosophila embryos reveals translational control of the segmentation gene hunchback. Chromosoma. 1989 Aug;98(2):81–85. doi: 10.1007/BF00291041. [DOI] [PubMed] [Google Scholar]
  52. Tautz D. Regulation of the Drosophila segmentation gene hunchback by two maternal morphogenetic centres. Nature. 1988 Mar 17;332(6161):281–284. doi: 10.1038/332281a0. [DOI] [PubMed] [Google Scholar]
  53. Thanos C. D., Goodwill K. E., Bowie J. U. Oligomeric structure of the human EphB2 receptor SAM domain. Science. 1999 Feb 5;283(5403):833–836. doi: 10.1126/science.283.5403.833. [DOI] [PubMed] [Google Scholar]
  54. Wang C., Dickinson L. K., Lehmann R. Genetics of nanos localization in Drosophila. Dev Dyn. 1994 Feb;199(2):103–115. doi: 10.1002/aja.1001990204. [DOI] [PubMed] [Google Scholar]
  55. Wang C., Lehmann R. Nanos is the localized posterior determinant in Drosophila. Cell. 1991 Aug 23;66(4):637–647. doi: 10.1016/0092-8674(91)90110-k. [DOI] [PubMed] [Google Scholar]
  56. Webster P. J., Liang L., Berg C. A., Lasko P., Macdonald P. M. Translational repressor bruno plays multiple roles in development and is widely conserved. Genes Dev. 1997 Oct 1;11(19):2510–2521. doi: 10.1101/gad.11.19.2510. [DOI] [PMC free article] [PubMed] [Google Scholar]
  57. Webster P. J., Suen J., Macdonald P. M. Drosophila virilis oskar transgenes direct body patterning but not pole cell formation or maintenance of mRNA localization in D. melanogaster. Development. 1994 Jul;120(7):2027–2037. doi: 10.1242/dev.120.7.2027. [DOI] [PubMed] [Google Scholar]
  58. Wharton R. P., Sonoda J., Lee T., Patterson M., Murata Y. The Pumilio RNA-binding domain is also a translational regulator. Mol Cell. 1998 May;1(6):863–872. doi: 10.1016/s1097-2765(00)80085-4. [DOI] [PubMed] [Google Scholar]
  59. Wharton R. P., Struhl G. RNA regulatory elements mediate control of Drosophila body pattern by the posterior morphogen nanos. Cell. 1991 Nov 29;67(5):955–967. doi: 10.1016/0092-8674(91)90368-9. [DOI] [PubMed] [Google Scholar]
  60. Zhang B., Gallegos M., Puoti A., Durkin E., Fields S., Kimble J., Wickens M. P. A conserved RNA-binding protein that regulates sexual fates in the C. elegans hermaphrodite germ line. Nature. 1997 Dec 4;390(6659):477–484. doi: 10.1038/37297. [DOI] [PubMed] [Google Scholar]

Articles from RNA are provided here courtesy of The RNA Society

RESOURCES