Skip to main content
RNA logoLink to RNA
. 1999 Dec;5(12):1548–1560. doi: 10.1017/s1355838299991938

PUF60: a novel U2AF65-related splicing activity.

P S Page-McCaw 1, K Amonlirdviman 1, P A Sharp 1
PMCID: PMC1369877  PMID: 10606266

Abstract

We have identified a new pyrimidine-tract binding factor, PUF, that is required, together with U2AF, for efficient reconstitution of RNA splicing in vitro. The activity has been purified and consists of two proteins, PUF60 and the previously described splicing factor p54. p54 and PUF60 form a stable complex in vitro when cotranslated in a reaction mixture. PUF activity, in conjunction with U2AF, facilitates the association of U2 snRNP with the pre-mRNA. This reaction is dependent upon the presence of the large subunit of U2AF, U2AF65, but not the small subunit U2AF35. PUF60 is homologous to both U2AF65 and the yeast splicing factor Mud2p. The C-terminal domain of PUF60, the PUMP domain, is distantly related to the RNA-recognition motif domain, and is probably important in protein-protein interactions.

Full Text

The Full Text of this article is available as a PDF (3.1 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Abovich N., Liao X. C., Rosbash M. The yeast MUD2 protein: an interaction with PRP11 defines a bridge between commitment complexes and U2 snRNP addition. Genes Dev. 1994 Apr 1;8(7):843–854. doi: 10.1101/gad.8.7.843. [DOI] [PubMed] [Google Scholar]
  2. Alam M. R., Caldwell B. D., Johnson R. C., Darlington D. N., Mains R. E., Eipper B. A. Novel proteins that interact with the COOH-terminal cytosolic routing determinants of an integral membrane peptide-processing enzyme. J Biol Chem. 1996 Nov 8;271(45):28636–28640. doi: 10.1074/jbc.271.45.28636. [DOI] [PubMed] [Google Scholar]
  3. Barabino S. M., Blencowe B. J., Ryder U., Sproat B. S., Lamond A. I. Targeted snRNP depletion reveals an additional role for mammalian U1 snRNP in spliceosome assembly. Cell. 1990 Oct 19;63(2):293–302. doi: 10.1016/0092-8674(90)90162-8. [DOI] [PubMed] [Google Scholar]
  4. Berglund J. A., Abovich N., Rosbash M. A cooperative interaction between U2AF65 and mBBP/SF1 facilitates branchpoint region recognition. Genes Dev. 1998 Mar 15;12(6):858–867. doi: 10.1101/gad.12.6.858. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Berglund J. A., Chua K., Abovich N., Reed R., Rosbash M. The splicing factor BBP interacts specifically with the pre-mRNA branchpoint sequence UACUAAC. Cell. 1997 May 30;89(5):781–787. doi: 10.1016/s0092-8674(00)80261-5. [DOI] [PubMed] [Google Scholar]
  6. Birney E., Kumar S., Krainer A. R. Analysis of the RNA-recognition motif and RS and RGG domains: conservation in metazoan pre-mRNA splicing factors. Nucleic Acids Res. 1993 Dec 25;21(25):5803–5816. doi: 10.1093/nar/21.25.5803. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Chaudhary N., McMahon C., Blobel G. Primary structure of a human arginine-rich nuclear protein that colocalizes with spliceosome components. Proc Natl Acad Sci U S A. 1991 Sep 15;88(18):8189–8193. doi: 10.1073/pnas.88.18.8189. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Chiara M. D., Champion-Arnaud P., Buvoli M., Nadal-Ginard B., Reed R. Specific protein-protein interactions between the essential mammalian spliceosome-associated proteins SAP 61 and SAP 114. Proc Natl Acad Sci U S A. 1994 Jul 5;91(14):6403–6407. doi: 10.1073/pnas.91.14.6403. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Crispino J. D., Mermoud J. E., Lamond A. I., Sharp P. A. Cis-acting elements distinct from the 5' splice site promote U1-independent pre-mRNA splicing. RNA. 1996 Jul;2(7):664–673. [PMC free article] [PubMed] [Google Scholar]
  10. Dickson B. J. Photoreceptor development: breaking down the barriers. Curr Biol. 1998 Jan 29;8(3):R90–R92. doi: 10.1016/s0960-9822(98)70054-5. [DOI] [PubMed] [Google Scholar]
  11. Dignam J. D., Lebovitz R. M., Roeder R. G. Accurate transcription initiation by RNA polymerase II in a soluble extract from isolated mammalian nuclei. Nucleic Acids Res. 1983 Mar 11;11(5):1475–1489. doi: 10.1093/nar/11.5.1475. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Goldenberg D. P., Berget P. B., King J. Maturation of the tail spike endorhamnosidase of Salmonella phage P22. J Biol Chem. 1982 Jul 10;257(13):7864–7871. [PubMed] [Google Scholar]
  13. Gozani O., Feld R., Reed R. Evidence that sequence-independent binding of highly conserved U2 snRNP proteins upstream of the branch site is required for assembly of spliceosomal complex A. Genes Dev. 1996 Jan 15;10(2):233–243. doi: 10.1101/gad.10.2.233. [DOI] [PubMed] [Google Scholar]
  14. Grabowski P. J., Padgett R. A., Sharp P. A. Messenger RNA splicing in vitro: an excised intervening sequence and a potential intermediate. Cell. 1984 Jun;37(2):415–427. doi: 10.1016/0092-8674(84)90372-6. [DOI] [PubMed] [Google Scholar]
  15. Hillier L. D., Lennon G., Becker M., Bonaldo M. F., Chiapelli B., Chissoe S., Dietrich N., DuBuque T., Favello A., Gish W. Generation and analysis of 280,000 human expressed sequence tags. Genome Res. 1996 Sep;6(9):807–828. doi: 10.1101/gr.6.9.807. [DOI] [PubMed] [Google Scholar]
  16. Imai H., Chan E. K., Kiyosawa K., Fu X. D., Tan E. M. Novel nuclear autoantigen with splicing factor motifs identified with antibody from hepatocellular carcinoma. J Clin Invest. 1993 Nov;92(5):2419–2426. doi: 10.1172/JCI116848. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Kanaar R., Roche S. E., Beall E. L., Green M. R., Rio D. C. The conserved pre-mRNA splicing factor U2AF from Drosophila: requirement for viability. Science. 1993 Oct 22;262(5133):569–573. doi: 10.1126/science.7692602. [DOI] [PubMed] [Google Scholar]
  18. Kennedy C. F., Krämer A., Berget S. M. A role for SRp54 during intron bridging of small introns with pyrimidine tracts upstream of the branch point. Mol Cell Biol. 1998 Sep;18(9):5425–5434. doi: 10.1128/mcb.18.9.5425. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Konarska M. M., Sharp P. A. Electrophoretic separation of complexes involved in the splicing of precursors to mRNAs. Cell. 1986 Sep 12;46(6):845–855. doi: 10.1016/0092-8674(86)90066-8. [DOI] [PubMed] [Google Scholar]
  20. Li S., Li Y., Carthew R. W., Lai Z. C. Photoreceptor cell differentiation requires regulated proteolysis of the transcriptional repressor Tramtrack. Cell. 1997 Aug 8;90(3):469–478. doi: 10.1016/s0092-8674(00)80507-3. [DOI] [PubMed] [Google Scholar]
  21. Meyer R. K., McKinley M. P., Bowman K. A., Braunfeld M. B., Barry R. A., Prusiner S. B. Separation and properties of cellular and scrapie prion proteins. Proc Natl Acad Sci U S A. 1986 Apr;83(8):2310–2314. doi: 10.1073/pnas.83.8.2310. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Michaud S., Reed R. An ATP-independent complex commits pre-mRNA to the mammalian spliceosome assembly pathway. Genes Dev. 1991 Dec;5(12B):2534–2546. doi: 10.1101/gad.5.12b.2534. [DOI] [PubMed] [Google Scholar]
  23. Moore M. J., Sharp P. A. Site-specific modification of pre-mRNA: the 2'-hydroxyl groups at the splice sites. Science. 1992 May 15;256(5059):992–997. doi: 10.1126/science.1589782. [DOI] [PubMed] [Google Scholar]
  24. Pan K. M., Baldwin M., Nguyen J., Gasset M., Serban A., Groth D., Mehlhorn I., Huang Z., Fletterick R. J., Cohen F. E. Conversion of alpha-helices into beta-sheets features in the formation of the scrapie prion proteins. Proc Natl Acad Sci U S A. 1993 Dec 1;90(23):10962–10966. doi: 10.1073/pnas.90.23.10962. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Peek R., Pruijn G. J., van der Kemp A. J., van Venrooij W. J. Subcellular distribution of Ro ribonucleoprotein complexes and their constituents. J Cell Sci. 1993 Nov;106(Pt 3):929–935. doi: 10.1242/jcs.106.3.929. [DOI] [PubMed] [Google Scholar]
  26. Potashkin J., Naik K., Wentz-Hunter K. U2AF homolog required for splicing in vivo. Science. 1993 Oct 22;262(5133):573–575. doi: 10.1126/science.8211184. [DOI] [PubMed] [Google Scholar]
  27. Query C. C., McCaw P. S., Sharp P. A. A minimal spliceosomal complex A recognizes the branch site and polypyrimidine tract. Mol Cell Biol. 1997 May;17(5):2944–2953. doi: 10.1128/mcb.17.5.2944. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Query C. C., Strobel S. A., Sharp P. A. Three recognition events at the branch-site adenine. EMBO J. 1996 Mar 15;15(6):1392–1402. [PMC free article] [PubMed] [Google Scholar]
  29. Rain J. C., Rafi Z., Rhani Z., Legrain P., Krämer A. Conservation of functional domains involved in RNA binding and protein-protein interactions in human and Saccharomyces cerevisiae pre-mRNA splicing factor SF1. RNA. 1998 May;4(5):551–565. doi: 10.1017/s1355838298980335. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Roscigno R. F., Weiner M., Garcia-Blanco M. A. A mutational analysis of the polypyrimidine tract of introns. Effects of sequence differences in pyrimidine tracts on splicing. J Biol Chem. 1993 May 25;268(15):11222–11229. [PubMed] [Google Scholar]
  31. Rudner D. Z., Kanaar R., Breger K. S., Rio D. C. Mutations in the small subunit of the Drosophila U2AF splicing factor cause lethality and developmental defects. Proc Natl Acad Sci U S A. 1996 Sep 17;93(19):10333–10337. doi: 10.1073/pnas.93.19.10333. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Ruskin B., Zamore P. D., Green M. R. A factor, U2AF, is required for U2 snRNP binding and splicing complex assembly. Cell. 1988 Jan 29;52(2):207–219. doi: 10.1016/0092-8674(88)90509-0. [DOI] [PubMed] [Google Scholar]
  33. Staknis D., Reed R. SR proteins promote the first specific recognition of Pre-mRNA and are present together with the U1 small nuclear ribonucleoprotein particle in a general splicing enhancer complex. Mol Cell Biol. 1994 Nov;14(11):7670–7682. doi: 10.1128/mcb.14.11.7670. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Steinbacher S., Seckler R., Miller S., Steipe B., Huber R., Reinemer P. Crystal structure of P22 tailspike protein: interdigitated subunits in a thermostable trimer. Science. 1994 Jul 15;265(5170):383–386. doi: 10.1126/science.8023158. [DOI] [PubMed] [Google Scholar]
  35. Tronchère H., Wang J., Fu X. D. A protein related to splicing factor U2AF35 that interacts with U2AF65 and SR proteins in splicing of pre-mRNA. Nature. 1997 Jul 24;388(6640):397–400. doi: 10.1038/41137. [DOI] [PubMed] [Google Scholar]
  36. Wahren M., Mellqvist E., Vene S., Ringertz N. R., Pettersson I. Nuclear colocalization of the Ro 60 kDa autoantigen and a subset of U snRNP domains. Eur J Cell Biol. 1996 Jul;70(3):189–197. [PubMed] [Google Scholar]
  37. Wentz-Hunter K., Potashkin J. The small subunit of the splicing factor U2AF is conserved in fission yeast. Nucleic Acids Res. 1996 May 15;24(10):1849–1854. doi: 10.1093/nar/24.10.1849. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Zamore P. D., Green M. R. Biochemical characterization of U2 snRNP auxiliary factor: an essential pre-mRNA splicing factor with a novel intranuclear distribution. EMBO J. 1991 Jan;10(1):207–214. doi: 10.1002/j.1460-2075.1991.tb07937.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  39. Zamore P. D., Green M. R. Identification, purification, and biochemical characterization of U2 small nuclear ribonucleoprotein auxiliary factor. Proc Natl Acad Sci U S A. 1989 Dec;86(23):9243–9247. doi: 10.1073/pnas.86.23.9243. [DOI] [PMC free article] [PubMed] [Google Scholar]
  40. Zamore P. D., Patton J. G., Green M. R. Cloning and domain structure of the mammalian splicing factor U2AF. Nature. 1992 Feb 13;355(6361):609–614. doi: 10.1038/355609a0. [DOI] [PubMed] [Google Scholar]
  41. Zhang M., Zamore P. D., Carmo-Fonseca M., Lamond A. I., Green M. R. Cloning and intracellular localization of the U2 small nuclear ribonucleoprotein auxiliary factor small subunit. Proc Natl Acad Sci U S A. 1992 Sep 15;89(18):8769–8773. doi: 10.1073/pnas.89.18.8769. [DOI] [PMC free article] [PubMed] [Google Scholar]
  42. Zhang W. J., Wu J. Y. Functional properties of p54, a novel SR protein active in constitutive and alternative splicing. Mol Cell Biol. 1996 Oct;16(10):5400–5408. doi: 10.1128/mcb.16.10.5400. [DOI] [PMC free article] [PubMed] [Google Scholar]
  43. Zorio D. A., Blumenthal T. U2AF35 is encoded by an essential gene clustered in an operon with RRM/cyclophilin in Caenorhabditis elegans. RNA. 1999 Apr;5(4):487–494. doi: 10.1017/s1355838299982225. [DOI] [PMC free article] [PubMed] [Google Scholar]
  44. Zorio D. A., Lea K., Blumenthal T. Cloning of Caenorhabditis U2AF65: an alternatively spliced RNA containing a novel exon. Mol Cell Biol. 1997 Feb;17(2):946–953. doi: 10.1128/mcb.17.2.946. [DOI] [PMC free article] [PubMed] [Google Scholar]
  45. Zuo P., Maniatis T. The splicing factor U2AF35 mediates critical protein-protein interactions in constitutive and enhancer-dependent splicing. Genes Dev. 1996 Jun 1;10(11):1356–1368. doi: 10.1101/gad.10.11.1356. [DOI] [PubMed] [Google Scholar]

Articles from RNA are provided here courtesy of The RNA Society

RESOURCES