Skip to main content
RNA logoLink to RNA
. 1999 Dec;5(12):1632–1644. doi: 10.1017/s1355838299990623

Structure of a regulatory 3' untranslated region from Trypanosoma brucei.

M Drozdz 1, C Clayton 1
PMCID: PMC1369884  PMID: 10606273

Abstract

The African trypanosome Trypanosoma brucei multiplies in mammalian extracellular fluids (bloodstream forms) and in the midgut of Tsetse flies (procyclic forms). The control of gene expression that is necessary to survive in these two environments operates almost exclusively at the posttranscriptional level, and the sequences responsible are located in the 3' untranslated regions of the mRNAs. The major surface proteins of procyclic trypanosomes, EP1, EP2, EP3, and GPEET, are not expressed in bloodstream forms. The 3' untranslated regions of these four mRNAs are not very similar, but all contain a conserved 26mer sequence that is required for developmental regulation. We have analyzed the conformation of the EP1 3' UTR in vitro by enzymatic digestion and lead hydrolysis, and in vivo by modification with DMS and with CMCT (introduced by electroporation). Results indicate that the 3' UTR can be divided into three domains. Domains I and III, at the 5' and 3' ends, form stable structures, but the central domain (domain II), which includes the 26mer, has no stable interactions either within itself, or with other parts of the 3' UTR. Domain I contains three leadzymes that do not conform to the previously reported consensus.

Full Text

The Full Text of this article is available as a PDF (1.6 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Aly R., Argaman M., Halman S., Shapira M. A regulatory role for the 5' and 3' untranslated regions in differential expression of hsp83 in Leishmania. Nucleic Acids Res. 1994 Aug 11;22(15):2922–2929. doi: 10.1093/nar/22.15.2922. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Beverley S. M., Clayton C. E. Transfection of Leishmania and Trypanosoma brucei by electroporation. Methods Mol Biol. 1993;21:333–348. doi: 10.1385/0-89603-239-6:333. [DOI] [PubMed] [Google Scholar]
  3. Biebinger S., Rettenmaier S., Flaspohler J., Hartmann C., Peña-Diaz J., Wirtz L. E., Hotz H. R., Barry J. D., Clayton C. The PARP promoter of Trypanosoma brucei is developmentally regulated in a chromosomal context. Nucleic Acids Res. 1996 Apr 1;24(7):1202–1211. doi: 10.1093/nar/24.7.1202. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Charest H., Zhang W. W., Matlashewski G. The developmental expression of Leishmania donovani A2 amastigote-specific genes is post-transcriptionally mediated and involves elements located in the 3'-untranslated region. J Biol Chem. 1996 Jul 19;271(29):17081–17090. doi: 10.1074/jbc.271.29.17081. [DOI] [PubMed] [Google Scholar]
  5. Chartrand P., Usman N., Cedergren R. Effect of structural modifications on the activity of the leadzyme. Biochemistry. 1997 Mar 18;36(11):3145–3150. doi: 10.1021/bi962219p. [DOI] [PubMed] [Google Scholar]
  6. Farkas W. R. Depolymerization of ribonucleic acid by plumbous ion. Biochim Biophys Acta. 1968 Feb 26;155(2):401–409. doi: 10.1016/0005-2787(68)90184-6. [DOI] [PubMed] [Google Scholar]
  7. Furger A., Schürch N., Kurath U., Roditi I. Elements in the 3' untranslated region of procyclin mRNA regulate expression in insect forms of Trypanosoma brucei by modulating RNA stability and translation. Mol Cell Biol. 1997 Aug;17(8):4372–4380. doi: 10.1128/mcb.17.8.4372. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Harris K. A., Jr, Crothers D. M., Ullu E. In vivo structural analysis of spliced leader RNAs in Trypanosoma brucei and Leptomonas collosoma: a flexible structure that is independent of cap4 methylations. RNA. 1995 Jun;1(4):351–362. [PMC free article] [PubMed] [Google Scholar]
  9. Hehl A., Vassella E., Braun R., Roditi I. A conserved stem-loop structure in the 3' untranslated region of procyclin mRNAs regulates expression in Trypanosoma brucei. Proc Natl Acad Sci U S A. 1994 Jan 4;91(1):370–374. doi: 10.1073/pnas.91.1.370. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Hotz H. R., Biebinger S., Flaspohler J., Clayton C. PARP gene expression: control at many levels. Mol Biochem Parasitol. 1998 Mar 1;91(1):131–143. doi: 10.1016/s0166-6851(97)00196-5. [DOI] [PubMed] [Google Scholar]
  11. Hotz H. R., Hartmann C., Huober K., Hug M., Clayton C. Mechanisms of developmental regulation in Trypanosoma brucei: a polypyrimidine tract in the 3'-untranslated region of a surface protein mRNA affects RNA abundance and translation. Nucleic Acids Res. 1997 Aug 1;25(15):3017–3026. doi: 10.1093/nar/25.15.3017. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Hotz H. R., Lorenz P., Fischer R., Krieger S., Clayton C. Role of 3'-untranslated regions in the regulation of hexose transporter mRNAs in Trypanosoma brucei. Mol Biochem Parasitol. 1995 Dec;75(1):1–14. doi: 10.1016/0166-6851(95)02503-0. [DOI] [PubMed] [Google Scholar]
  13. Kufel J., Kirsebom L. A. Residues in Escherichia coli RNase P RNA important for cleavage site selection and divalent metal ion binding. J Mol Biol. 1996 Nov 15;263(5):685–698. doi: 10.1006/jmbi.1996.0608. [DOI] [PubMed] [Google Scholar]
  14. Legault P., Hoogstraten C. G., Metlitzky E., Pardi A. Order, dynamics and metal-binding in the lead-dependent ribozyme. J Mol Biol. 1998 Nov 27;284(2):325–335. doi: 10.1006/jmbi.1998.2181. [DOI] [PubMed] [Google Scholar]
  15. Lowman H. B., Draper D. E. On the recognition of helical RNA by cobra venom V1 nuclease. J Biol Chem. 1986 Apr 25;261(12):5396–5403. [PubMed] [Google Scholar]
  16. Moazed D., Stern S., Noller H. F. Rapid chemical probing of conformation in 16 S ribosomal RNA and 30 S ribosomal subunits using primer extension. J Mol Biol. 1986 Feb 5;187(3):399–416. doi: 10.1016/0022-2836(86)90441-9. [DOI] [PubMed] [Google Scholar]
  17. Pan T., Dichtl B., Uhlenbeck O. C. Properties of an in vitro selected Pb2+ cleavage motif. Biochemistry. 1994 Aug 16;33(32):9561–9565. doi: 10.1021/bi00198a023. [DOI] [PubMed] [Google Scholar]
  18. Pan T., Uhlenbeck O. C. A small metalloribozyme with a two-step mechanism. Nature. 1992 Aug 13;358(6387):560–563. doi: 10.1038/358560a0. [DOI] [PubMed] [Google Scholar]
  19. Pitula J., Ruyechan W. T., Williams N. Trypanosoma brucei: identification and purification of a poly(A)-binding protein. Exp Parasitol. 1998 Feb;88(2):157–160. doi: 10.1006/expr.1998.4211. [DOI] [PubMed] [Google Scholar]
  20. Polacek N., Barta A. Metal ion probing of rRNAs: evidence for evolutionarily conserved divalent cation binding pockets. RNA. 1998 Oct;4(10):1282–1294. doi: 10.1017/s1355838298980347. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Roditi I., Clayton C. An unambiguous nomenclature for the major surface glycoproteins of the procyclic form of Trypanosoma brucei. Mol Biochem Parasitol. 1999 Sep 20;103(1):99–100. doi: 10.1016/s0166-6851(99)00124-3. [DOI] [PubMed] [Google Scholar]
  22. Roditi I., Furger A., Ruepp S., Schürch N., Bütikofer P. Unravelling the procyclin coat of Trypanosoma brucei. Mol Biochem Parasitol. 1998 Mar 1;91(1):117–130. doi: 10.1016/s0166-6851(97)00195-3. [DOI] [PubMed] [Google Scholar]
  23. Rubin J. R., Sundaralingam M. Lead ion binding and RNA chain hydrolysis in phenylalanine tRNA. J Biomol Struct Dyn. 1983 Dec;1(3):639–646. doi: 10.1080/07391102.1983.10507471. [DOI] [PubMed] [Google Scholar]
  24. Ruepp S., Furger A., Kurath U., Renggli C. K., Hemphill A., Brun R., Roditi I. Survival of Trypanosoma brucei in the tsetse fly is enhanced by the expression of specific forms of procyclin. J Cell Biol. 1997 Jun 16;137(6):1369–1379. doi: 10.1083/jcb.137.6.1369. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Schürch N., Furger A., Kurath U., Roditi I. Contributions of the procyclin 3' untranslated region and coding region to the regulation of expression in bloodstream forms of Trypanosoma brucei. Mol Biochem Parasitol. 1997 Oct;89(1):109–121. doi: 10.1016/s0166-6851(97)00107-2. [DOI] [PubMed] [Google Scholar]
  26. Streicher B., von Ahsen U., Schroeder R. Lead cleavage sites in the core structure of group I intron-RNA. Nucleic Acids Res. 1993 Jan 25;21(2):311–317. doi: 10.1093/nar/21.2.311. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Teixeira S. M., Kirchhoff L. V., Donelson J. E. Post-transcriptional elements regulating expression of mRNAs from the amastin/tuzin gene cluster of Trypanosoma cruzi. J Biol Chem. 1995 Sep 22;270(38):22586–22594. doi: 10.1074/jbc.270.38.22586. [DOI] [PubMed] [Google Scholar]
  28. Thrierr J. C., Dourlent M., Leng M. A study of polyuridylic acid. J Mol Biol. 1971 Jun 28;58(3):815–830. doi: 10.1016/0022-2836(71)90042-8. [DOI] [PubMed] [Google Scholar]
  29. Werner C., Krebs B., Keith G., Dirheimer G. Specific cleavages of pure tRNAs by plumbous ions. Biochim Biophys Acta. 1976 May 3;432(2):161–175. doi: 10.1016/0005-2787(76)90158-1. [DOI] [PubMed] [Google Scholar]
  30. Zuker M., Jacobson A. B. Using reliability information to annotate RNA secondary structures. RNA. 1998 Jun;4(6):669–679. doi: 10.1017/s1355838298980116. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from RNA are provided here courtesy of The RNA Society

RESOURCES