Skip to main content
RNA logoLink to RNA
. 2000 Jan;6(1):79–87. doi: 10.1017/s1355838200991544

Expanded CUG repeat RNAs form hairpins that activate the double-stranded RNA-dependent protein kinase PKR.

B Tian 1, R J White 1, T Xia 1, S Welle 1, D H Turner 1, M B Mathews 1, C A Thornton 1
PMCID: PMC1369895  PMID: 10668800

Abstract

Myotonic dystrophy is caused by an expanded CTG repeat in the 3' untranslated region of the DM protein kinase (DMPK) gene. The expanded repeat triggers the nuclear retention of mutant DMPK transcripts, but the resulting underexpression of DMPK probably does not fully account for the severe phenotype. One proposed disease mechanism is that nuclear accumulation of expanded CUG repeats may interfere with nuclear function. Here we show by thermal melting and nuclease digestion studies that CUG repeats form highly stable hairpins. Furthermore, CUG repeats bind to the dsRNA-binding domain of PKR, the dsRNA-activated protein kinase. The threshold for binding to PKR is approximately 15 CUG repeats, and the affinity increases with longer repeat lengths. Finally, CUG repeats that are pathologically expanded can activate PKR in vitro. These results raise the possibility that the disease mechanism could be, in part, a gain of function by mutant DMPK transcripts that involves sequestration or activation of dsRNA binding proteins.

Full Text

The Full Text of this article is available as a PDF (467.1 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bevilacqua P. C., Cech T. R. Minor-groove recognition of double-stranded RNA by the double-stranded RNA-binding domain from the RNA-activated protein kinase PKR. Biochemistry. 1996 Aug 6;35(31):9983–9994. doi: 10.1021/bi9607259. [DOI] [PubMed] [Google Scholar]
  2. Bowater R. P., Rosche W. A., Jaworski A., Sinden R. R., Wells R. D. Relationship between Escherichia coli growth and deletions of CTG.CAG triplet repeats in plasmids. J Mol Biol. 1996 Nov 22;264(1):82–96. doi: 10.1006/jmbi.1996.0625. [DOI] [PubMed] [Google Scholar]
  3. Cazenave C., Uhlenbeck O. C. RNA template-directed RNA synthesis by T7 RNA polymerase. Proc Natl Acad Sci U S A. 1994 Jul 19;91(15):6972–6976. doi: 10.1073/pnas.91.15.6972. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Circle D. A., Neel O. D., Robertson H. D., Clarke P. A., Mathews M. B. Surprising specificity of PKR binding to delta agent genomic RNA. RNA. 1997 Apr;3(4):438–448. [PMC free article] [PubMed] [Google Scholar]
  5. Davis B. M., McCurrach M. E., Taneja K. L., Singer R. H., Housman D. E. Expansion of a CUG trinucleotide repeat in the 3' untranslated region of myotonic dystrophy protein kinase transcripts results in nuclear retention of transcripts. Proc Natl Acad Sci U S A. 1997 Jul 8;94(14):7388–7393. doi: 10.1073/pnas.94.14.7388. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Griggs R. C., Jozefowicz R., Kingston W., Nair K. S., Herr B. E., Halliday D. Mechanism of muscle wasting in myotonic dystrophy. Ann Neurol. 1990 May;27(5):505–512. doi: 10.1002/ana.410270509. [DOI] [PubMed] [Google Scholar]
  7. Haines D. S., Strauss K. I., Gillespie D. H. Cellular response to double-stranded RNA. J Cell Biochem. 1991 May;46(1):9–20. doi: 10.1002/jcb.240460104. [DOI] [PubMed] [Google Scholar]
  8. Hunter T., Hunt T., Jackson R. J., Robertson H. D. The characteristics of inhibition of protein synthesis by double-stranded ribonucleic acid in reticulocyte lysates. J Biol Chem. 1975 Jan 25;250(2):409–417. [PubMed] [Google Scholar]
  9. Jacobs B. L., Langland J. O. When two strands are better than one: the mediators and modulators of the cellular responses to double-stranded RNA. Virology. 1996 May 15;219(2):339–349. doi: 10.1006/viro.1996.0259. [DOI] [PubMed] [Google Scholar]
  10. Jansen G., Groenen P. J., Bächner D., Jap P. H., Coerwinkel M., Oerlemans F., van den Broek W., Gohlsch B., Pette D., Plomp J. J. Abnormal myotonic dystrophy protein kinase levels produce only mild myopathy in mice. Nat Genet. 1996 Jul;13(3):316–324. doi: 10.1038/ng0796-316. [DOI] [PubMed] [Google Scholar]
  11. Jeffrey I. W., Kadereit S., Meurs E. F., Metzger T., Bachmann M., Schwemmle M., Hovanessian A. G., Clemens M. J. Nuclear localization of the interferon-inducible protein kinase PKR in human cells and transfected mouse cells. Exp Cell Res. 1995 May;218(1):17–27. doi: 10.1006/excr.1995.1126. [DOI] [PubMed] [Google Scholar]
  12. Jiménez-García L. F., Green S. R., Mathews M. B., Spector D. L. Organization of the double-stranded RNA-activated protein kinase DAI and virus-associated VA RNAI in adenovirus-2-infected HeLa cells. J Cell Sci. 1993 Sep;106(Pt 1):11–22. doi: 10.1242/jcs.106.1.11. [DOI] [PubMed] [Google Scholar]
  13. Koob M. D., Moseley M. L., Schut L. J., Benzow K. A., Bird T. D., Day J. W., Ranum L. P. An untranslated CTG expansion causes a novel form of spinocerebellar ataxia (SCA8) Nat Genet. 1999 Apr;21(4):379–384. doi: 10.1038/7710. [DOI] [PubMed] [Google Scholar]
  14. Kostura M., Mathews M. B. Purification and activation of the double-stranded RNA-dependent eIF-2 kinase DAI. Mol Cell Biol. 1989 Apr;9(4):1576–1586. doi: 10.1128/mcb.9.4.1576. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Kronfeld-Kinar Y., Vilchik S., Hyman T., Leibkowicz F., Salzberg S. Involvement of PKR in the regulation of myogenesis. Cell Growth Differ. 1999 Mar;10(3):201–212. [PubMed] [Google Scholar]
  16. Kumar M., Carmichael G. G. Nuclear antisense RNA induces extensive adenosine modifications and nuclear retention of target transcripts. Proc Natl Acad Sci U S A. 1997 Apr 15;94(8):3542–3547. doi: 10.1073/pnas.94.8.3542. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Maeda M., Taft C. S., Bush E. W., Holder E., Bailey W. M., Neville H., Perryman M. B., Bies R. D. Identification, tissue-specific expression, and subcellular localization of the 80- and 71-kDa forms of myotonic dystrophy kinase protein. J Biol Chem. 1995 Sep 1;270(35):20246–20249. doi: 10.1074/jbc.270.35.20246. [DOI] [PubMed] [Google Scholar]
  18. Manche L., Green S. R., Schmedt C., Mathews M. B. Interactions between double-stranded RNA regulators and the protein kinase DAI. Mol Cell Biol. 1992 Nov;12(11):5238–5248. doi: 10.1128/mcb.12.11.5238. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Mathews D. H., Sabina J., Zuker M., Turner D. H. Expanded sequence dependence of thermodynamic parameters improves prediction of RNA secondary structure. J Mol Biol. 1999 May 21;288(5):911–940. doi: 10.1006/jmbi.1999.2700. [DOI] [PubMed] [Google Scholar]
  20. Mathews M. B., Shenk T. Adenovirus virus-associated RNA and translation control. J Virol. 1991 Nov;65(11):5657–5662. doi: 10.1128/jvi.65.11.5657-5662.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Mellits K. H., Pe'ery T., Manche L., Robertson H. D., Mathews M. B. Removal of double-stranded contaminants from RNA transcripts: synthesis of adenovirus VA RNAI from a T7 vector. Nucleic Acids Res. 1990 Sep 25;18(18):5401–5406. doi: 10.1093/nar/18.18.5401. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Minks M. A., West D. K., Benvin S., Baglioni C. Structural requirements of double-stranded RNA for the activation of 2',5'-oligo(A) polymerase and protein kinase of interferon-treated HeLa cells. J Biol Chem. 1979 Oct 25;254(20):10180–10183. [PubMed] [Google Scholar]
  23. Napierała M., Krzyzosiak W. J. CUG repeats present in myotonin kinase RNA form metastable "slippery" hairpins. J Biol Chem. 1997 Dec 5;272(49):31079–31085. doi: 10.1074/jbc.272.49.31079. [DOI] [PubMed] [Google Scholar]
  24. Ordway J. M., Detloff P. J. In vitro synthesis and cloning of long CAG repeats. Biotechniques. 1996 Oct;21(4):609-10, 612. doi: 10.2144/96214bm08. [DOI] [PubMed] [Google Scholar]
  25. Petruska J., Hartenstine M. J., Goodman M. F. Analysis of strand slippage in DNA polymerase expansions of CAG/CTG triplet repeats associated with neurodegenerative disease. J Biol Chem. 1998 Feb 27;273(9):5204–5210. doi: 10.1074/jbc.273.9.5204. [DOI] [PubMed] [Google Scholar]
  26. Philips A. V., Timchenko L. T., Cooper T. A. Disruption of splicing regulated by a CUG-binding protein in myotonic dystrophy. Science. 1998 May 1;280(5364):737–741. doi: 10.1126/science.280.5364.737. [DOI] [PubMed] [Google Scholar]
  27. Reddy S., Smith D. B., Rich M. M., Leferovich J. M., Reilly P., Davis B. M., Tran K., Rayburn H., Bronson R., Cros D. Mice lacking the myotonic dystrophy protein kinase develop a late onset progressive myopathy. Nat Genet. 1996 Jul;13(3):325–335. doi: 10.1038/ng0796-325. [DOI] [PubMed] [Google Scholar]
  28. Robertson H. D., Dunn J. J. Ribonucleic acid processing activity of Escherichia coli ribonuclease III. J Biol Chem. 1975 Apr 25;250(8):3050–3056. [PubMed] [Google Scholar]
  29. Robertson H. D., Manche L., Mathews M. B. Paradoxical interactions between human delta hepatitis agent RNA and the cellular protein kinase PKR. J Virol. 1996 Aug;70(8):5611–5617. doi: 10.1128/jvi.70.8.5611-5617.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Scadden A. D., Smith C. W. A ribonuclease specific for inosine-containing RNA: a potential role in antiviral defence? EMBO J. 1997 Apr 15;16(8):2140–2149. doi: 10.1093/emboj/16.8.2140. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Schmedt C., Green S. R., Manche L., Taylor D. R., Ma Y., Mathews M. B. Functional characterization of the RNA-binding domain and motif of the double-stranded RNA-dependent protein kinase DAI (PKR). J Mol Biol. 1995 May 26;249(1):29–44. doi: 10.1006/jmbi.1995.0278. [DOI] [PubMed] [Google Scholar]
  32. Schröder H. C., Wenger R., Rottmann M., Müller W. E. Alteration of nuclear (2'-5')oligoriboadenylate synthetase and nuclease activities preceding replication of human immunodeficiency virus in H9 cells. Biol Chem Hoppe Seyler. 1988 Sep;369(9):985–995. doi: 10.1515/bchm3.1988.369.2.985. [DOI] [PubMed] [Google Scholar]
  33. Serra M. J., Axenson T. J., Turner D. H. A model for the stabilities of RNA hairpins based on a study of the sequence dependence of stability for hairpins of six nucleotides. Biochemistry. 1994 Nov 29;33(47):14289–14296. doi: 10.1021/bi00251a042. [DOI] [PubMed] [Google Scholar]
  34. Taneja K. L., McCurrach M., Schalling M., Housman D., Singer R. H. Foci of trinucleotide repeat transcripts in nuclei of myotonic dystrophy cells and tissues. J Cell Biol. 1995 Mar;128(6):995–1002. doi: 10.1083/jcb.128.6.995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Thornton C. A., Johnson K., Moxley R. T., 3rd Myotonic dystrophy patients have larger CTG expansions in skeletal muscle than in leukocytes. Ann Neurol. 1994 Jan;35(1):104–107. doi: 10.1002/ana.410350116. [DOI] [PubMed] [Google Scholar]
  36. Timchenko L. T., Miller J. W., Timchenko N. A., DeVore D. R., Datar K. V., Lin L., Roberts R., Caskey C. T., Swanson M. S. Identification of a (CUG)n triplet repeat RNA-binding protein and its expression in myotonic dystrophy. Nucleic Acids Res. 1996 Nov 15;24(22):4407–4414. doi: 10.1093/nar/24.22.4407. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Triana-Alonso F. J., Dabrowski M., Wadzack J., Nierhaus K. H. Self-coded 3'-extension of run-off transcripts produces aberrant products during in vitro transcription with T7 RNA polymerase. J Biol Chem. 1995 Mar 17;270(11):6298–6307. doi: 10.1074/jbc.270.11.6298. [DOI] [PubMed] [Google Scholar]
  38. Velculescu V. E., Zhang L., Vogelstein B., Kinzler K. W. Serial analysis of gene expression. Science. 1995 Oct 20;270(5235):484–487. doi: 10.1126/science.270.5235.484. [DOI] [PubMed] [Google Scholar]
  39. Walter A. E., Turner D. H., Kim J., Lyttle M. H., Müller P., Mathews D. H., Zuker M. Coaxial stacking of helixes enhances binding of oligoribonucleotides and improves predictions of RNA folding. Proc Natl Acad Sci U S A. 1994 Sep 27;91(20):9218–9222. doi: 10.1073/pnas.91.20.9218. [DOI] [PMC free article] [PubMed] [Google Scholar]
  40. Welle S., Bhatt K., Thornton C. A. Inventory of high-abundance mRNAs in skeletal muscle of normal men. Genome Res. 1999 May;9(5):506–513. [PMC free article] [PubMed] [Google Scholar]
  41. Wreschner D. H., Nathanel T., Herzberg M. Double stranded RNA and the nuclear matrix--implications for the 2-5A system. Prog Clin Biol Res. 1985;202:47–66. [PubMed] [Google Scholar]

Articles from RNA are provided here courtesy of The RNA Society

RESOURCES