Abstract
The inactivity or occlusion of the HIV-1 poly(A) signal when in the 5' long terminal repeat (LTR) has been mechanistically investigated. First we show that neither the homologous HIV-1 promoter nor the close proximity of this RNA processing signal to the transcript initiation site is required for the occlusion effect. Instead we demonstrate that the major splice donor (MSD) site positioned about 200 bp downstream maintains the poly(A) site in an inactive state. Although mutation of MSD results in activation of the 5' LTR poly(A) signal, this effect can be suppressed by targeting U1 snRNAs near to the mutated MSD by base pairing. We show that hybrid U7-U1 snRNAs can also suppress the poly(A) signal and that this suppression is dependent on the U1 stem-loop 1. In particular the binding site for the U1 snRNP protein 70K that binds to the loop structure of stem-loop 1 is associated with poly(A) site occlusion. These experiments were carried out with an HIV-1 proviral construct and as such emphasize the physiological importance of this splice donor-poly(A) site interaction.
Full Text
The Full Text of this article is available as a PDF (454.9 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Ashe M. P., Griffin P., James W., Proudfoot N. J. Poly(A) site selection in the HIV-1 provirus: inhibition of promoter-proximal polyadenylation by the downstream major splice donor site. Genes Dev. 1995 Dec 1;9(23):3008–3025. doi: 10.1101/gad.9.23.3008. [DOI] [PubMed] [Google Scholar]
- Ashe M. P., Pearson L. H., Proudfoot N. J. The HIV-1 5' LTR poly(A) site is inactivated by U1 snRNP interaction with the downstream major splice donor site. EMBO J. 1997 Sep 15;16(18):5752–5763. doi: 10.1093/emboj/16.18.5752. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Cherrington J., Ganem D. Regulation of polyadenylation in human immunodeficiency virus (HIV): contributions of promoter proximity and upstream sequences. EMBO J. 1992 Apr;11(4):1513–1524. doi: 10.1002/j.1460-2075.1992.tb05196.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Cohen J. B., Snow J. E., Spencer S. D., Levinson A. D. Suppression of mammalian 5' splice-site defects by U1 small nuclear RNAs from a distance. Proc Natl Acad Sci U S A. 1994 Oct 25;91(22):10470–10474. doi: 10.1073/pnas.91.22.10470. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Eggermont J., Proudfoot N. J. Poly(A) signals and transcriptional pause sites combine to prevent interference between RNA polymerase II promoters. EMBO J. 1993 Jun;12(6):2539–2548. doi: 10.1002/j.1460-2075.1993.tb05909.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Gilmartin G. M., Fleming E. S., Oetjen J. Activation of HIV-1 pre-mRNA 3' processing in vitro requires both an upstream element and TAR. EMBO J. 1992 Dec;11(12):4419–4428. doi: 10.1002/j.1460-2075.1992.tb05542.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Gilmartin G. M., Fleming E. S., Oetjen J., Graveley B. R. CPSF recognition of an HIV-1 mRNA 3'-processing enhancer: multiple sequence contacts involved in poly(A) site definition. Genes Dev. 1995 Jan 1;9(1):72–83. doi: 10.1101/gad.9.1.72. [DOI] [PubMed] [Google Scholar]
- Gunderson S. I., Polycarpou-Schwarz M., Mattaj I. W. U1 snRNP inhibits pre-mRNA polyadenylation through a direct interaction between U1 70K and poly(A) polymerase. Mol Cell. 1998 Jan;1(2):255–264. doi: 10.1016/s1097-2765(00)80026-x. [DOI] [PubMed] [Google Scholar]
- Gunderson S. I., Vagner S., Polycarpou-Schwarz M., Mattaj I. W. Involvement of the carboxyl terminus of vertebrate poly(A) polymerase in U1A autoregulation and in the coupling of splicing and polyadenylation. Genes Dev. 1997 Mar 15;11(6):761–773. doi: 10.1101/gad.11.6.761. [DOI] [PubMed] [Google Scholar]
- Hwang D. Y., Cohen J. B. Base pairing at the 5' splice site with U1 small nuclear RNA promotes splicing of the upstream intron but may be dispensable for slicing of the downstream intron. Mol Cell Biol. 1996 Jun;16(6):3012–3022. doi: 10.1128/mcb.16.6.3012. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Klasens B. I., Thiesen M., Virtanen A., Berkhout B. The ability of the HIV-1 AAUAAA signal to bind polyadenylation factors is controlled by local RNA structure. Nucleic Acids Res. 1999 Jan 15;27(2):446–454. doi: 10.1093/nar/27.2.446. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Scherly D., Boelens W., Dathan N. A., van Venrooij W. J., Mattaj I. W. Major determinants of the specificity of interaction between small nuclear ribonucleoproteins U1A and U2B'' and their cognate RNAs. Nature. 1990 Jun 7;345(6275):502–506. doi: 10.1038/345502a0. [DOI] [PubMed] [Google Scholar]
- Scherly D., Boelens W., van Venrooij W. J., Dathan N. A., Hamm J., Mattaj I. W. Identification of the RNA binding segment of human U1 A protein and definition of its binding site on U1 snRNA. EMBO J. 1989 Dec 20;8(13):4163–4170. doi: 10.1002/j.1460-2075.1989.tb08601.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Stefanovic B., Hackl W., Lührmann R., Schümperli D. Assembly, nuclear import and function of U7 snRNPs studied by microinjection of synthetic U7 RNA into Xenopus oocytes. Nucleic Acids Res. 1995 Aug 25;23(16):3141–3151. doi: 10.1093/nar/23.16.3141. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Vagner S., Rüegsegger U., Gunderson S. I., Keller W., Mattaj I. W. Position-dependent inhibition of the cleavage step of pre-mRNA 3'-end processing by U1 snRNP. RNA. 2000 Feb;6(2):178–188. doi: 10.1017/s1355838200991854. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Weichs an der Glon C., Ashe M., Eggermont J., Proudfoot N. J. Tat-dependent occlusion of the HIV poly(A) site. EMBO J. 1993 May;12(5):2119–2128. doi: 10.1002/j.1460-2075.1993.tb05860.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Weichs an der Glon C., Monks J., Proudfoot N. J. Occlusion of the HIV poly(A) site. Genes Dev. 1991 Feb;5(2):244–253. doi: 10.1101/gad.5.2.244. [DOI] [PubMed] [Google Scholar]
