Skip to main content
RNA logoLink to RNA
. 2000 Feb;6(2):220–232. doi: 10.1017/s1355838200992112

Calculation of the relative geometry of tRNAs in the ribosome from directed hydroxyl-radical probing data.

S Joseph 1, M L Whirl 1, D Kondo 1, H F Noller 1, R B Altman 1
PMCID: PMC1369908  PMID: 10688361

Abstract

The many interactions of tRNA with the ribosome are fundamental to protein synthesis. During the peptidyl transferase reaction, the acceptor ends of the aminoacyl and peptidyl tRNAs must be in close proximity to allow peptide bond formation, and their respective anticodons must base pair simultaneously with adjacent trinucleotide codons on the mRNA. The two tRNAs in this state can be arranged in two nonequivalent general configurations called the R and S orientations, many versions of which have been proposed for the geometry of tRNAs in the ribosome. Here, we report the combined use of computational analysis and tethered hydroxyl-radical probing to constrain their arrangement. We used Fe(II) tethered to the 5' end of anticodon stem-loop analogs (ASLs) of tRNA and to the 5' end of deacylated tRNA(Phe) to generate hydroxyl radicals that probe proximal positions in the backbone of adjacent tRNAs in the 70S ribosome. We inferred probe-target distances from the resulting RNA strand cleavage intensities and used these to calculate the mutual arrangement of A-site and P-site tRNAs in the ribosome, using three different structure estimation algorithms. The two tRNAs are constrained to the S configuration with an angle of about 45 degrees between the respective planes of the molecules. The terminal phosphates of 3'CCA are separated by 23 A when using the tRNA crystal conformations, and the anticodon arms of the two tRNAs are sufficiently close to interact with adjacent codons in mRNA.

Full Text

The Full Text of this article is available as a PDF (711.7 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Agrawal R. K., Penczek P., Grassucci R. A., Li Y., Leith A., Nierhaus K. H., Frank J. Direct visualization of A-, P-, and E-site transfer RNAs in the Escherichia coli ribosome. Science. 1996 Feb 16;271(5251):1000–1002. doi: 10.1126/science.271.5251.1000. [DOI] [PubMed] [Google Scholar]
  2. Balasubramanian B., Pogozelski W. K., Tullius T. D. DNA strand breaking by the hydroxyl radical is governed by the accessible surface areas of the hydrogen atoms of the DNA backbone. Proc Natl Acad Sci U S A. 1998 Aug 18;95(17):9738–9743. doi: 10.1073/pnas.95.17.9738. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Bernstein F. C., Koetzle T. F., Williams G. J., Meyer E. F., Jr, Brice M. D., Rodgers J. R., Kennard O., Shimanouchi T., Tasumi M. The Protein Data Bank: a computer-based archival file for macromolecular structures. J Mol Biol. 1977 May 25;112(3):535–542. doi: 10.1016/s0022-2836(77)80200-3. [DOI] [PubMed] [Google Scholar]
  4. Brimacombe R. The structure of ribosomal RNA: a three-dimensional jigsaw puzzle. Eur J Biochem. 1995 Jun 1;230(2):365–383. [PubMed] [Google Scholar]
  5. Cate J. H., Yusupov M. M., Yusupova G. Z., Earnest T. N., Noller H. F. X-ray crystal structures of 70S ribosome functional complexes. Science. 1999 Sep 24;285(5436):2095–2104. doi: 10.1126/science.285.5436.2095. [DOI] [PubMed] [Google Scholar]
  6. Chen C. C., Singh J. P., Altman R. B. Hierarchical organization of molecular structure computations. J Comput Biol. 1998 Fall;5(3):409–422. doi: 10.1089/cmb.1998.5.409. [DOI] [PubMed] [Google Scholar]
  7. Czworkowski J., Moore P. B. The elongation phase of protein synthesis. Prog Nucleic Acid Res Mol Biol. 1996;54:293–332. doi: 10.1016/s0079-6603(08)60366-9. [DOI] [PubMed] [Google Scholar]
  8. Easterwood T. R., Major F., Malhotra A., Harvey S. C. Orientations of transfer RNA in the ribosomal A and P sites. Nucleic Acids Res. 1994 Sep 11;22(18):3779–3786. doi: 10.1093/nar/22.18.3779. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. England T. E., Bruce A. G., Uhlenbeck O. C. Specific labeling of 3' termini of RNA with T4 RNA ligase. Methods Enzymol. 1980;65(1):65–74. doi: 10.1016/s0076-6879(80)65011-3. [DOI] [PubMed] [Google Scholar]
  10. Fairclough R. H., Cantor C. R. An energy transfer equilibrium between two identical copies of a ribosome-bound fluorescent transfer RNA analogue: implications for the possible structure of codon-anticodon complexes. J Mol Biol. 1979 Aug 25;132(4):587–601. doi: 10.1016/0022-2836(79)90376-0. [DOI] [PubMed] [Google Scholar]
  11. Fairclough R. H., Cantor C. R. The distance between the anticodon loops of two tRNAs bound to the 70 S Escherichia coli ribosome. J Mol Biol. 1979 Aug 25;132(4):575–586. doi: 10.1016/0022-2836(79)90375-9. [DOI] [PubMed] [Google Scholar]
  12. Fuller W., Hodgson A. Conformation of the anticodon loop intRNA. Nature. 1967 Aug 19;215(5103):817–821. doi: 10.1038/215817a0. [DOI] [PubMed] [Google Scholar]
  13. Girshovich A. S., Bochkareva E. S., Vasiliev V. D. Localization of elongation factor Tu on the ribosome. FEBS Lett. 1986 Mar 3;197(1-2):192–198. doi: 10.1016/0014-5793(86)80325-8. [DOI] [PubMed] [Google Scholar]
  14. Gornicki P., Nurse K., Hellmann W., Boublik M., Ofengand J. High resolution localization of the tRNA anticodon interaction site on the Escherichia coli 30 S ribosomal subunit. J Biol Chem. 1984 Aug 25;259(16):10493–10498. [PubMed] [Google Scholar]
  15. Grajevskaja R. A., Ivanov Y. V., Saminsky E. M. 70-S ribosomes of Escherichia coli have an additional site for deacylated tRNA binding. Eur J Biochem. 1982 Nov;128(1):47–52. doi: 10.1111/j.1432-1033.1982.tb06929.x. [DOI] [PubMed] [Google Scholar]
  16. Green R., Noller H. F. Ribosomes and translation. Annu Rev Biochem. 1997;66:679–716. doi: 10.1146/annurev.biochem.66.1.679. [DOI] [PubMed] [Google Scholar]
  17. Hüttenhofer A., Noller H. F. Footprinting mRNA-ribosome complexes with chemical probes. EMBO J. 1994 Aug 15;13(16):3892–3901. doi: 10.1002/j.1460-2075.1994.tb06700.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Hüttenhofer A., Noller H. F. Hydroxyl radical cleavage of tRNA in the ribosomal P site. Proc Natl Acad Sci U S A. 1992 Sep 1;89(17):7851–7855. doi: 10.1073/pnas.89.17.7851. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Johnson A. E., Adkins H. J., Matthews E. A., Cantor C. R. Distance moved by transfer RNA during translocation from the A site to the P site on the ribosome. J Mol Biol. 1982 Mar 25;156(1):113–140. doi: 10.1016/0022-2836(82)90462-4. [DOI] [PubMed] [Google Scholar]
  20. Joseph S., Noller H. F. Mapping the rRNA neighborhood of the acceptor end of tRNA in the ribosome. EMBO J. 1996 Feb 15;15(4):910–916. [PMC free article] [PubMed] [Google Scholar]
  21. Joseph S., Weiser B., Noller H. F. Mapping the inside of the ribosome with an RNA helical ruler. Science. 1997 Nov 7;278(5340):1093–1098. doi: 10.1126/science.278.5340.1093. [DOI] [PubMed] [Google Scholar]
  22. Kaziro Y. The role of guanosine 5'-triphosphate in polypeptide chain elongation. Biochim Biophys Acta. 1978 Sep 21;505(1):95–127. doi: 10.1016/0304-4173(78)90009-5. [DOI] [PubMed] [Google Scholar]
  23. Kim S. H., Quigley G. J., Suddath F. L., McPherson A., Sneden D., Kim J. J., Weinzierl J., Rich A. Three-dimensional structure of yeast phenylalanine transfer RNA: folding of the polynucleotide chain. Science. 1973 Jan 19;179(4070):285–288. doi: 10.1126/science.179.4070.285. [DOI] [PubMed] [Google Scholar]
  24. Kirillov S. V., Makarov E. M., Semenkov YuP Quantitative study of interaction of deacylated tRNA with Escherichia coli ribosomes. Role of 50 S subunits in formation of the E site. FEBS Lett. 1983 Jun 27;157(1):91–94. doi: 10.1016/0014-5793(83)81122-3. [DOI] [PubMed] [Google Scholar]
  25. Lake J. A. Aminoacyl-tRNA binding at the recognition site is the first step of the elongation cycle of protein synthesis. Proc Natl Acad Sci U S A. 1977 May;74(5):1903–1907. doi: 10.1073/pnas.74.5.1903. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Lill R., Lepier A., Schwägele F., Sprinzl M., Vogt H., Wintermeyer W. Specific recognition of the 3'-terminal adenosine of tRNAPhe in the exit site of Escherichia coli ribosomes. J Mol Biol. 1988 Oct 5;203(3):699–705. doi: 10.1016/0022-2836(88)90203-3. [DOI] [PubMed] [Google Scholar]
  27. Lill R., Robertson J. M., Wintermeyer W. tRNA binding sites of ribosomes from Escherichia coli. Biochemistry. 1984 Dec 18;23(26):6710–6717. doi: 10.1021/bi00321a066. [DOI] [PubMed] [Google Scholar]
  28. Lim V., Venclovas C., Spirin A., Brimacombe R., Mitchell P., Müller F. How are tRNAs and mRNA arranged in the ribosome? An attempt to correlate the stereochemistry of the tRNA-mRNA interaction with constraints imposed by the ribosomal topography. Nucleic Acids Res. 1992 Jun 11;20(11):2627–2637. doi: 10.1093/nar/20.11.2627. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Major F., Turcotte M., Gautheret D., Lapalme G., Fillion E., Cedergren R. The combination of symbolic and numerical computation for three-dimensional modeling of RNA. Science. 1991 Sep 13;253(5025):1255–1260. doi: 10.1126/science.1716375. [DOI] [PubMed] [Google Scholar]
  30. Malhotra A., Penczek P., Agrawal R. K., Gabashvili I. S., Grassucci R. A., Jünemann R., Burkhardt N., Nierhaus K. H., Frank J. Escherichia coli 70 S ribosome at 15 A resolution by cryo-electron microscopy: localization of fMet-tRNAfMet and fitting of L1 protein. J Mol Biol. 1998 Jul 3;280(1):103–116. doi: 10.1006/jmbi.1998.1859. [DOI] [PubMed] [Google Scholar]
  31. Matzke A. J., Barta A., Kuechler E. Mechanism of translocation: relative arrangement of tRNA and mRNA on the ribosome. Proc Natl Acad Sci U S A. 1980 Sep;77(9):5110–5114. doi: 10.1073/pnas.77.9.5110. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. McDonald J. J., Rein R. A stereochemical model of the transpeptidation complex. J Biomol Struct Dyn. 1987 Apr;4(5):729–744. doi: 10.1080/07391102.1987.10507675. [DOI] [PubMed] [Google Scholar]
  33. Moazed D., Noller H. F. Intermediate states in the movement of transfer RNA in the ribosome. Nature. 1989 Nov 9;342(6246):142–148. doi: 10.1038/342142a0. [DOI] [PubMed] [Google Scholar]
  34. Mueller F., Stark H., van Heel M., Rinke-Appel J., Brimacombe R. A new model for the three-dimensional folding of Escherichia coli 16 S ribosomal RNA. III. The topography of the functional centre. J Mol Biol. 1997 Aug 29;271(4):566–587. doi: 10.1006/jmbi.1997.1212. [DOI] [PubMed] [Google Scholar]
  35. Nagano K., Nagano N. Transfer RNA docking pair model in the ribosomal pre- and post-translocational states. Nucleic Acids Res. 1997 Mar 15;25(6):1254–1264. doi: 10.1093/nar/25.6.1254. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Nagano K., Takagi H., Harel M. The side-by-side model of two tRNA molecules allowing the alpha-helical conformation of the nascent polypeptide during the ribosomal transpeptidation. Biochimie. 1991 Jul-Aug;73(7-8):947–960. doi: 10.1016/0300-9084(91)90136-o. [DOI] [PubMed] [Google Scholar]
  37. Nierhaus K. H., Wadzack J., Burkhardt N., Jünemann R., Meerwinck W., Willumeit R., Stuhrmann H. B. Structure of the elongating ribosome: arrangement of the two tRNAs before and after translocation. Proc Natl Acad Sci U S A. 1998 Feb 3;95(3):945–950. doi: 10.1073/pnas.95.3.945. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Nissen P., Kjeldgaard M., Thirup S., Polekhina G., Reshetnikova L., Clark B. F., Nyborg J. Crystal structure of the ternary complex of Phe-tRNAPhe, EF-Tu, and a GTP analog. Science. 1995 Dec 1;270(5241):1464–1472. doi: 10.1126/science.270.5241.1464. [DOI] [PubMed] [Google Scholar]
  39. Olson H. M., Grant P. G., Cooperman B. S., Glitz D. G. Immunoelectron microscopic localization of puromycin binding on the large subunit of the Escherichia coli ribosome. J Biol Chem. 1982 Mar 10;257(5):2649–2656. [PubMed] [Google Scholar]
  40. Paulsen H., Robertson J. M., Wintermeyer W. Topological arrangement of two transfer RNAs on the ribosome. Fluorescence energy transfer measurements between A and P site-bound tRNAphe. J Mol Biol. 1983 Jun 25;167(2):411–426. doi: 10.1016/s0022-2836(83)80342-8. [DOI] [PubMed] [Google Scholar]
  41. Prabahakaran M., Harvey S. C. Models for two tRNAs bound to successive codons on mRNA on the ribosome. J Biomol Struct Dyn. 1989 Aug;7(1):167–179. doi: 10.1080/07391102.1989.10507758. [DOI] [PubMed] [Google Scholar]
  42. Rheinberger H. J., Sternbach H., Nierhaus K. H. Three tRNA binding sites on Escherichia coli ribosomes. Proc Natl Acad Sci U S A. 1981 Sep;78(9):5310–5314. doi: 10.1073/pnas.78.9.5310. [DOI] [PMC free article] [PubMed] [Google Scholar]
  43. Rould M. A., Perona J. J., Söll D., Steitz T. A. Structure of E. coli glutaminyl-tRNA synthetase complexed with tRNA(Gln) and ATP at 2.8 A resolution. Science. 1989 Dec 1;246(4934):1135–1142. doi: 10.1126/science.2479982. [DOI] [PubMed] [Google Scholar]
  44. Ruff M., Krishnaswamy S., Boeglin M., Poterszman A., Mitschler A., Podjarny A., Rees B., Thierry J. C., Moras D. Class II aminoacyl transfer RNA synthetases: crystal structure of yeast aspartyl-tRNA synthetase complexed with tRNA(Asp). Science. 1991 Jun 21;252(5013):1682–1689. doi: 10.1126/science.2047877. [DOI] [PubMed] [Google Scholar]
  45. Samaha R. R., Green R., Noller H. F. A base pair between tRNA and 23S rRNA in the peptidyl transferase centre of the ribosome. Nature. 1995 Sep 28;377(6547):309–314. doi: 10.1038/377309a0. [DOI] [PubMed] [Google Scholar]
  46. Sampson J. R., DiRenzo A. B., Behlen L. S., Uhlenbeck O. C. Nucleotides in yeast tRNAPhe required for the specific recognition by its cognate synthetase. Science. 1989 Mar 10;243(4896):1363–1366. doi: 10.1126/science.2646717. [DOI] [PubMed] [Google Scholar]
  47. Smith D., Yarus M. tRNA-tRNA interactions within cellular ribosomes. Proc Natl Acad Sci U S A. 1989 Jun;86(12):4397–4401. doi: 10.1073/pnas.86.12.4397. [DOI] [PMC free article] [PubMed] [Google Scholar]
  48. Spirin A. S. Location of tRNA on the ribosome. FEBS Lett. 1983 Jun 13;156(2):217–221. doi: 10.1016/0014-5793(83)80499-2. [DOI] [PubMed] [Google Scholar]
  49. Spirin A. S. Ribosomal translocation: facts and models. Prog Nucleic Acid Res Mol Biol. 1985;32:75–114. doi: 10.1016/s0079-6603(08)60346-3. [DOI] [PubMed] [Google Scholar]
  50. Stark H., Orlova E. V., Rinke-Appel J., Jünke N., Mueller F., Rodnina M., Wintermeyer W., Brimacombe R., van Heel M. Arrangement of tRNAs in pre- and posttranslocational ribosomes revealed by electron cryomicroscopy. Cell. 1997 Jan 10;88(1):19–28. doi: 10.1016/s0092-8674(00)81854-1. [DOI] [PubMed] [Google Scholar]
  51. Stark H., Rodnina M. V., Rinke-Appel J., Brimacombe R., Wintermeyer W., van Heel M. Visualization of elongation factor Tu on the Escherichia coli ribosome. Nature. 1997 Sep 25;389(6649):403–406. doi: 10.1038/38770. [DOI] [PubMed] [Google Scholar]
  52. Stern S., Weiser B., Noller H. F. Model for the three-dimensional folding of 16 S ribosomal RNA. J Mol Biol. 1988 Nov 20;204(2):447–481. doi: 10.1016/0022-2836(88)90588-8. [DOI] [PubMed] [Google Scholar]
  53. Wagenknecht T., Carazo J. M., Radermacher M., Frank J. Three-dimensional reconstruction of the ribosome from Escherichia coli. Biophys J. 1989 Mar;55(3):455–464. doi: 10.1016/S0006-3495(89)82839-5. [DOI] [PMC free article] [PubMed] [Google Scholar]
  54. Wells B. D., Cantor C. R. Ribosome binding by tRNAs with fluorescent labeled 3' termini. Nucleic Acids Res. 1980 Jul 25;8(14):3229–3246. doi: 10.1093/nar/8.14.3229. [DOI] [PMC free article] [PubMed] [Google Scholar]
  55. Westhof E., Dumas P., Moras D. Restrained refinement of two crystalline forms of yeast aspartic acid and phenylalanine transfer RNA crystals. Acta Crystallogr A. 1988 Mar 1;44(Pt 2):112–123. [PubMed] [Google Scholar]
  56. Wilson K. S., Noller H. F. Molecular movement inside the translational engine. Cell. 1998 Feb 6;92(3):337–349. doi: 10.1016/s0092-8674(00)80927-7. [DOI] [PubMed] [Google Scholar]
  57. Woese C. Molecular mechanics of translation: a reciprocating ratchet mechanism. Nature. 1970 May 30;226(5248):817–820. doi: 10.1038/226817a0. [DOI] [PubMed] [Google Scholar]
  58. Wower J., Hixson S. S., Zimmermann R. A. Labeling the peptidyltransferase center of the Escherichia coli ribosome with photoreactive tRNA(Phe) derivatives containing azidoadenosine at the 3' end of the acceptor arm: a model of the tRNA-ribosome complex. Proc Natl Acad Sci U S A. 1989 Jul;86(14):5232–5236. doi: 10.1073/pnas.86.14.5232. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from RNA are provided here courtesy of The RNA Society

RESOURCES