Skip to main content
RNA logoLink to RNA
. 2000 Feb;6(2):233–244. doi: 10.1017/s135583820099191x

tRNA-guanine transglycosylase from Escherichia coli: recognition of noncognate-cognate chimeric tRNA and discovery of a novel recognition site within the TpsiC arm of tRNA(Phe).

F L Kung 1, S Nonekowski 1, G A Garcia 1
PMCID: PMC1369909  PMID: 10688362

Abstract

tRNA-guanine transglycosylase (TGT) is a key enzyme involved in the posttranscriptional modification of tRNA across the three kingdoms of life. In eukaryotes and eubacteria, TGT is involved in the introduction of queuine into the anticodon of the cognate tRNAs. In archaebacteria, TGT is responsible for the introduction of archaeosine into the D-loop of the appropriate tRNAs. The tRNA recognition patterns for the eubacterial (Escherichia coli) TGT have been studied. These studies are all consistent with a restricted recognition motif involving a U-G-U sequence in a seven-base loop at the end of a helix. While attempting to investigate the potential of negative recognition elements in noncognate tRNAs via the use of chimeric tRNAs, we have discovered a second recognition site for the E. coli TGT in the TpsiC arm of in vitro-transcribed yeast tRNA(Phe). Kinetic analyses of synthetic mutant oligoribonucleotides corresponding to the TpsiC arm of the yeast tRNA(Phe) indicate that the specific site of TGT action is G53 (within a U-G-U sequence at the transition of the TpsiC stem into the loop). Posttranscriptional base modifications in tRNA(Phe) block recognition by TGT, most likely due to a stabilization of the tRNA structure such that G53 is inaccessible to TGT. These results demonstrate that TGT can recognize the U-G-U sequence within a structural context that is different than the canonical U-G-U in the anticodon loop of tRNA(Asp). Although it is unclear if this second recognition site is physiologically relevant, this does suggest that other RNA species could serve as substrates for TGT in vivo.

Full Text

The Full Text of this article is available as a PDF (587.7 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Beebe J. A., Fierke C. A. A kinetic mechanism for cleavage of precursor tRNA(Asp) catalyzed by the RNA component of Bacillus subtilis ribonuclease P. Biochemistry. 1994 Aug 30;33(34):10294–10304. doi: 10.1021/bi00200a009. [DOI] [PubMed] [Google Scholar]
  2. Behlen L. S., Sampson J. R., DiRenzo A. B., Uhlenbeck O. C. Lead-catalyzed cleavage of yeast tRNAPhe mutants. Biochemistry. 1990 Mar 13;29(10):2515–2523. doi: 10.1021/bi00462a013. [DOI] [PubMed] [Google Scholar]
  3. Chong S., Garcia G. A. A versatile and general prokaryotic expression vector, pLACT7. Biotechniques. 1994 Oct;17(4):686, 688, 690-1. [PubMed] [Google Scholar]
  4. Curnow A. W., Garcia G. A. tRNA-guanine transglycosylase from Escherichia coli. Minimal tRNA structure and sequence requirements for recognition. J Biol Chem. 1995 Jul 21;270(29):17264–17267. doi: 10.1074/jbc.270.29.17264. [DOI] [PubMed] [Google Scholar]
  5. Curnow A. W., Garcia G. A. tRNA-guanine transglycosylase from Escherichia coli: recognition of dimeric, unmodified tRNA(Tyr). Biochimie. 1994;76(12):1183–1191. doi: 10.1016/0300-9084(94)90048-5. [DOI] [PubMed] [Google Scholar]
  6. Curnow A. W., Kung F. L., Koch K. A., Garcia G. A. tRNA-guanine transglycosylase from Escherichia coli: gross tRNA structural requirements for recognition. Biochemistry. 1993 May 18;32(19):5239–5246. doi: 10.1021/bi00070a036. [DOI] [PubMed] [Google Scholar]
  7. Dumas P., Ebel J. P., Giegé R., Moras D., Thierry J. C., Westhof E. Crystal structure of yeast tRNAAsp: atomic coordinates. Biochimie. 1985 Jun;67(6):597–606. doi: 10.1016/s0300-9084(85)80199-1. [DOI] [PubMed] [Google Scholar]
  8. Garcia G. A., Koch K. A., Chong S. tRNA-guanine transglycosylase from Escherichia coli. Overexpression, purification and quaternary structure. J Mol Biol. 1993 May 20;231(2):489–497. doi: 10.1006/jmbi.1993.1296. [DOI] [PubMed] [Google Scholar]
  9. Grodberg J., Dunn J. J. ompT encodes the Escherichia coli outer membrane protease that cleaves T7 RNA polymerase during purification. J Bacteriol. 1988 Mar;170(3):1245–1253. doi: 10.1128/jb.170.3.1245-1253.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Grädler U., Ficner R., Garcia G. A., Stubbs M. T., Klebe G., Reuter K. Mutagenesis and crystallographic studies of Zymomonas mobilis tRNA-guanine transglycosylase to elucidate the role of serine 103 for enzymatic activity. FEBS Lett. 1999 Jul 2;454(1-2):142–146. doi: 10.1016/s0014-5793(99)00793-0. [DOI] [PubMed] [Google Scholar]
  11. Gu X., Ofengand J., Santi D. V. In vitro methylation of Escherichia coli 16S rRNA by tRNA (m5U54)-methyltransferase. Biochemistry. 1994 Mar 1;33(8):2255–2261. doi: 10.1021/bi00174a036. [DOI] [PubMed] [Google Scholar]
  12. Hoops G. C., Townsend L. B., Garcia G. A. tRNA-guanine transglycosylase from Escherichia coli: structure-activity studies investigating the role of the aminomethyl substituent of the heterocyclic substrate PreQ1. Biochemistry. 1995 Nov 21;34(46):15381–15387. doi: 10.1021/bi00046a047. [DOI] [PubMed] [Google Scholar]
  13. Kasai H., Nakanishi K., Macfarlane R. D., Torgerson D. F., Ohashi Z., McCloskey J. A., Gross H. J., Nishimura S. Letter: The structure of Q* nucleoside isolated from rabbit liver transfer ribonucleic acid. J Am Chem Soc. 1976 Aug 4;98(16):5044–5046. doi: 10.1021/ja00432a071. [DOI] [PubMed] [Google Scholar]
  14. Kim S. H., Sussman J. L., Suddath F. L., Quigley G. J., McPherson A., Wang A. H., Seeman N. C., RICH A. The general structure of transfer RNA molecules. Proc Natl Acad Sci U S A. 1974 Dec;71(12):4970–4974. doi: 10.1073/pnas.71.12.4970. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Kung F. L., Garcia G. A. tRNA-guanine transglycosylase from Escherichia coli: recognition of full-length 'queuine-cognate' tRNAs. FEBS Lett. 1998 Jul 24;431(3):427–432. doi: 10.1016/s0014-5793(98)00801-1. [DOI] [PubMed] [Google Scholar]
  16. Limbach P. A., Crain P. F., McCloskey J. A. Summary: the modified nucleosides of RNA. Nucleic Acids Res. 1994 Jun 25;22(12):2183–2196. doi: 10.1093/nar/22.12.2183. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Muramatsu T., Nishikawa K., Nemoto F., Kuchino Y., Nishimura S., Miyazawa T., Yokoyama S. Codon and amino-acid specificities of a transfer RNA are both converted by a single post-transcriptional modification. Nature. 1988 Nov 10;336(6195):179–181. doi: 10.1038/336179a0. [DOI] [PubMed] [Google Scholar]
  18. Muramatsu T., Yokoyama S., Horie N., Matsuda A., Ueda T., Yamaizumi Z., Kuchino Y., Nishimura S., Miyazawa T. A novel lysine-substituted nucleoside in the first position of the anticodon of minor isoleucine tRNA from Escherichia coli. J Biol Chem. 1988 Jul 5;263(19):9261–9267. doi: 10.1351/pac198961030573. [DOI] [PubMed] [Google Scholar]
  19. Nakanishi S., Ueda T., Hori H., Yamazaki N., Okada N., Watanabe K. A UGU sequence in the anticodon loop is a minimum requirement for recognition by Escherichia coli tRNA-guanine transglycosylase. J Biol Chem. 1994 Dec 23;269(51):32221–32225. [PubMed] [Google Scholar]
  20. Renaud M., Ehrlich R., Bonnet J., Remy P. Lack of correlation between affinity of the tRNA for the aminoacyl-tRNA synthetase and aminoacylation capacity as studied with modified tRNAPhe. Eur J Biochem. 1979 Oct;100(1):157–164. doi: 10.1111/j.1432-1033.1979.tb02044.x. [DOI] [PubMed] [Google Scholar]
  21. Reuter K., Chong S., Ullrich F., Kersten H., Garcia G. A. Serine 90 is required for enzymic activity by tRNA-guanine transglycosylase from Escherichia coli. Biochemistry. 1994 Jun 14;33(23):7041–7046. doi: 10.1021/bi00189a004. [DOI] [PubMed] [Google Scholar]
  22. Robertus J. D., Ladner J. E., Finch J. T., Rhodes D., Brown R. S., Clark B. F., Klug A. Structure of yeast phenylalanine tRNA at 3 A resolution. Nature. 1974 Aug 16;250(467):546–551. doi: 10.1038/250546a0. [DOI] [PubMed] [Google Scholar]
  23. Romier C., Reuter K., Suck D., Ficner R. Crystal structure of tRNA-guanine transglycosylase: RNA modification by base exchange. EMBO J. 1996 Jun 3;15(11):2850–2857. [PMC free article] [PubMed] [Google Scholar]
  24. Romier C., Reuter K., Suck D., Ficner R. Mutagenesis and crystallographic studies of Zymomonas mobilis tRNA-guanine transglycosylase reveal aspartate 102 as the active site nucleophile. Biochemistry. 1996 Dec 10;35(49):15734–15739. doi: 10.1021/bi962003n. [DOI] [PubMed] [Google Scholar]
  25. Sampson J. R., DiRenzo A. B., Behlen L. S., Uhlenbeck O. C. Role of the tertiary nucleotides in the interaction of yeast phenylalanine tRNA with its cognate synthetase. Biochemistry. 1990 Mar 13;29(10):2523–2532. doi: 10.1021/bi00462a014. [DOI] [PubMed] [Google Scholar]
  26. Sampson J. R., Uhlenbeck O. C. Biochemical and physical characterization of an unmodified yeast phenylalanine transfer RNA transcribed in vitro. Proc Natl Acad Sci U S A. 1988 Feb;85(4):1033–1037. doi: 10.1073/pnas.85.4.1033. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Szweykowska-Kulinska Z., Senger B., Keith G., Fasiolo F., Grosjean H. Intron-dependent formation of pseudouridines in the anticodon of Saccharomyces cerevisiae minor tRNA(Ile). EMBO J. 1994 Oct 3;13(19):4636–4644. doi: 10.1002/j.1460-2075.1994.tb06786.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Westhof E., Dumas P., Moras D. Crystallographic refinement of yeast aspartic acid transfer RNA. J Mol Biol. 1985 Jul 5;184(1):119–145. doi: 10.1016/0022-2836(85)90048-8. [DOI] [PubMed] [Google Scholar]
  29. Westhof E., Dumas P., Moras D. Restrained refinement of two crystalline forms of yeast aspartic acid and phenylalanine transfer RNA crystals. Acta Crystallogr A. 1988 Mar 1;44(Pt 2):112–123. [PubMed] [Google Scholar]
  30. Wolfson A. D., Khvorova A. M., Sauter C., Florentz C., Giegé R. Mimics of yeast tRNAAsp and their recognition by aspartyl-tRNA synthetase. Biochemistry. 1999 Sep 14;38(37):11926–11932. doi: 10.1021/bi9908383. [DOI] [PubMed] [Google Scholar]
  31. Wrzesinski J., Nurse K., Bakin A., Lane B. G., Ofengand J. A dual-specificity pseudouridine synthase: an Escherichia coli synthase purified and cloned on the basis of its specificity for psi 746 in 23S RNA is also specific for psi 32 in tRNA(phe). RNA. 1995 Jun;1(4):437–448. [PMC free article] [PubMed] [Google Scholar]

Articles from RNA are provided here courtesy of The RNA Society

RESOURCES