Skip to main content
RNA logoLink to RNA
. 2000 Feb;6(2):282–295. doi: 10.1017/s1355838200991684

The leader of the HIV-1 RNA genome forms a compactly folded tertiary structure.

B Berkhout 1, J L van Wamel 1
PMCID: PMC1369913  PMID: 10688366

Abstract

The untranslated leader of the RNA genome of the human immunodeficiency virus type 1 (HIV-1) encodes multiple signals that regulate distinct steps of the viral replication cycle. The RNA secondary structure of several replicative signals in the HIV-1 leader is critical for function. Well-known examples include the TAR hairpin that forms the binding site for the viral Tat trans-activator protein and the DIS hairpin that is important for dimerization and subsequent packaging of the viral RNA into virion particles. In this study, we present evidence for the formation of a tertiary structure by the complete HIV-1 leader RNA. This conformer was recognized as a fast-migrating band on nondenaturing polyacrylamide gels, and such a migration effect is generally attributed to differences in compactness. Both the 5' and 3' domains of the 335-nt HIV-1 leader RNA are required for the formation of the compact RNA structure, and the presence of several putative interaction domains was revealed by an extensive analysis of the denaturing effect of antisense DNA oligonucleotides. The buffer conditions and sequence requirements for conformer formation are strikingly different from that of the RNA-dimerization reaction. In particular, the conformer was destabilized in the presence of Mg2+ ions and by the viral nucleocapsid (NC) protein. The presence of a stable RNA structure in the HIV-1 leader was also apparent when this RNA was used as template for reverse transcription, which yielded massive stops ahead of the structured leader domain. Formation of the conformer is a reversible event, suggesting that the HIV-1 leader is a dynamic molecule. The putative biological function of this conformational polymorphism as molecular RNA switch in the HIV-1 replication cycle is discussed.

Full Text

The Full Text of this article is available as a PDF (2.4 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Aboul-ela F., Karn J., Varani G. The structure of the human immunodeficiency virus type-1 TAR RNA reveals principles of RNA recognition by Tat protein. J Mol Biol. 1995 Oct 20;253(2):313–332. doi: 10.1006/jmbi.1995.0555. [DOI] [PubMed] [Google Scholar]
  2. Ahmed Y. F., Gilmartin G. M., Hanly S. M., Nevins J. R., Greene W. C. The HTLV-I Rex response element mediates a novel form of mRNA polyadenylation. Cell. 1991 Feb 22;64(4):727–737. doi: 10.1016/0092-8674(91)90502-p. [DOI] [PubMed] [Google Scholar]
  3. Aldovini A., Young R. A. Mutations of RNA and protein sequences involved in human immunodeficiency virus type 1 packaging result in production of noninfectious virus. J Virol. 1990 May;64(5):1920–1926. doi: 10.1128/jvi.64.5.1920-1926.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Arts E. J., Wainberg M. A. Human immunodeficiency virus type 1 reverse transcriptase and early events in reverse transcription. Adv Virus Res. 1996;46:97–163. doi: 10.1016/s0065-3527(08)60071-8. [DOI] [PubMed] [Google Scholar]
  5. Ashe M. P., Pearson L. H., Proudfoot N. J. The HIV-1 5' LTR poly(A) site is inactivated by U1 snRNP interaction with the downstream major splice donor site. EMBO J. 1997 Sep 15;16(18):5752–5763. doi: 10.1093/emboj/16.18.5752. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Banks J. D., Yeo A., Green K., Cepeda F., Linial M. L. A minimal avian retroviral packaging sequence has a complex structure. J Virol. 1998 Jul;72(7):6190–6194. doi: 10.1128/jvi.72.7.6190-6194.1998. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Bassi G. S., Murchie A. I., Lilley D. M. The ion-induced folding of the hammerhead ribozyme: core sequence changes that perturb folding into the active conformation. RNA. 1996 Aug;2(8):756–768. [PMC free article] [PubMed] [Google Scholar]
  8. Bassi G. S., Møllegaard N. E., Murchie A. I., von Kitzing E., Lilley D. M. Ionic interactions and the global conformations of the hammerhead ribozyme. Nat Struct Biol. 1995 Jan;2(1):45–55. doi: 10.1038/nsb0195-45. [DOI] [PubMed] [Google Scholar]
  9. Berkhout B., Klaver B., Das A. T. A conserved hairpin structure predicted for the poly(A) signal of human and simian immunodeficiency viruses. Virology. 1995 Feb 20;207(1):276–281. doi: 10.1006/viro.1995.1077. [DOI] [PubMed] [Google Scholar]
  10. Berkhout B., Silverman R. H., Jeang K. T. Tat trans-activates the human immunodeficiency virus through a nascent RNA target. Cell. 1989 Oct 20;59(2):273–282. doi: 10.1016/0092-8674(89)90289-4. [DOI] [PubMed] [Google Scholar]
  11. Berkhout B. Structure and function of the human immunodeficiency virus leader RNA. Prog Nucleic Acid Res Mol Biol. 1996;54:1–34. doi: 10.1016/s0079-6603(08)60359-1. [DOI] [PubMed] [Google Scholar]
  12. Berkhout B., van Wamel J. L. Role of the DIS hairpin in replication of human immunodeficiency virus type 1. J Virol. 1996 Oct;70(10):6723–6732. doi: 10.1128/jvi.70.10.6723-6732.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Berkhout B., van Wamel J. Accurate scanning of the BssHII endonuclease in search for its DNA cleavage site. J Biol Chem. 1996 Jan 26;271(4):1837–1840. doi: 10.1074/jbc.271.4.1837. [DOI] [PubMed] [Google Scholar]
  14. Berkowitz R., Fisher J., Goff S. P. RNA packaging. Curr Top Microbiol Immunol. 1996;214:177–218. doi: 10.1007/978-3-642-80145-7_6. [DOI] [PubMed] [Google Scholar]
  15. Bieth E., Gabus C., Darlix J. L. A study of the dimer formation of Rous sarcoma virus RNA and of its effect on viral protein synthesis in vitro. Nucleic Acids Res. 1990 Jan 11;18(1):119–127. doi: 10.1093/nar/18.1.119. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Calnan B. J., Biancalana S., Hudson D., Frankel A. D. Analysis of arginine-rich peptides from the HIV Tat protein reveals unusual features of RNA-protein recognition. Genes Dev. 1991 Feb;5(2):201–210. doi: 10.1101/gad.5.2.201. [DOI] [PubMed] [Google Scholar]
  17. Clavel F., Orenstein J. M. A mutant of human immunodeficiency virus with reduced RNA packaging and abnormal particle morphology. J Virol. 1990 Oct;64(10):5230–5234. doi: 10.1128/jvi.64.10.5230-5234.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Clever J. L., Eckstein D. A., Parslow T. G. Genetic dissociation of the encapsidation and reverse transcription functions in the 5' R region of human immunodeficiency virus type 1. J Virol. 1999 Jan;73(1):101–109. doi: 10.1128/jvi.73.1.101-109.1999. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Clever J. L., Parslow T. G. Mutant human immunodeficiency virus type 1 genomes with defects in RNA dimerization or encapsidation. J Virol. 1997 May;71(5):3407–3414. doi: 10.1128/jvi.71.5.3407-3414.1997. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Costa M., Christian E. L., Michel F. Differential chemical probing of a group II self-splicing intron identifies bases involved in tertiary interactions and supports an alternative secondary structure model of domain V. RNA. 1998 Sep;4(9):1055–1068. doi: 10.1017/s1355838298980670. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Costa M., Fontaine J. M., Loiseaux-de Goër S., Michel F. A group II self-splicing intron from the brown alga Pylaiella littoralis is active at unusually low magnesium concentrations and forms populations of molecules with a uniform conformation. J Mol Biol. 1997 Dec 5;274(3):353–364. doi: 10.1006/jmbi.1997.1416. [DOI] [PubMed] [Google Scholar]
  22. Damgaard C. K., Dyhr-Mikkelsen H., Kjems J. Mapping the RNA binding sites for human immunodeficiency virus type-1 gag and NC proteins within the complete HIV-1 and -2 untranslated leader regions. Nucleic Acids Res. 1998 Aug 15;26(16):3667–3676. doi: 10.1093/nar/26.16.3667. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Dardel F., Marquet R., Ehresmann C., Ehresmann B., Blanquet S. Solution studies of the dimerization initiation site of HIV-1 genomic RNA. Nucleic Acids Res. 1998 Aug 1;26(15):3567–3571. doi: 10.1093/nar/26.15.3567. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Das A. T., Klaver B., Berkhout B. A hairpin structure in the R region of the human immunodeficiency virus type 1 RNA genome is instrumental in polyadenylation site selection. J Virol. 1999 Jan;73(1):81–91. doi: 10.1128/jvi.73.1.81-91.1999. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Das A. T., Klaver B., Berkhout B. Reduced replication of human immunodeficiency virus type 1 mutants that use reverse transcription primers other than the natural tRNA(3Lys). J Virol. 1995 May;69(5):3090–3097. doi: 10.1128/jvi.69.5.3090-3097.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Das A. T., Klaver B., Berkhout B. The 5' and 3' TAR elements of human immunodeficiency virus exert effects at several points in the virus life cycle. J Virol. 1998 Nov;72(11):9217–9223. doi: 10.1128/jvi.72.11.9217-9223.1998. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Das A. T., Klaver B., Klasens B. I., van Wamel J. L., Berkhout B. A conserved hairpin motif in the R-U5 region of the human immunodeficiency virus type 1 RNA genome is essential for replication. J Virol. 1997 Mar;71(3):2346–2356. doi: 10.1128/jvi.71.3.2346-2356.1997. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. De Guzman R. N., Wu Z. R., Stalling C. C., Pappalardo L., Borer P. N., Summers M. F. Structure of the HIV-1 nucleocapsid protein bound to the SL3 psi-RNA recognition element. Science. 1998 Jan 16;279(5349):384–388. doi: 10.1126/science.279.5349.384. [DOI] [PubMed] [Google Scholar]
  29. Draper D. E. Strategies for RNA folding. Trends Biochem Sci. 1996 Apr;21(4):145–149. [PubMed] [Google Scholar]
  30. Friederich M. W., Hagerman P. J. The angle between the anticodon and aminoacyl acceptor stems of yeast tRNA(Phe) is strongly modulated by magnesium ions. Biochemistry. 1997 May 20;36(20):6090–6099. doi: 10.1021/bi970066f. [DOI] [PubMed] [Google Scholar]
  31. Greatorex J., Lever A. Retroviral RNA dimer linkage. J Gen Virol. 1998 Dec;79(Pt 12):2877–2882. doi: 10.1099/0022-1317-79-12-2877. [DOI] [PubMed] [Google Scholar]
  32. Haddrick M., Lear A. L., Cann A. J., Heaphy S. Evidence that a kissing loop structure facilitates genomic RNA dimerisation in HIV-1. J Mol Biol. 1996 May 31;259(1):58–68. doi: 10.1006/jmbi.1996.0301. [DOI] [PubMed] [Google Scholar]
  33. Hammann C., Hormes R., Sczakiel G., Tabler M. A spermidine-induced conformational change of long-armed hammerhead ribozymes: ionic requirements for fast cleavage kinetics. Nucleic Acids Res. 1997 Dec 1;25(23):4715–4722. doi: 10.1093/nar/25.23.4715. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Harrison G. P., Mayo M. S., Hunter E., Lever A. M. Pausing of reverse transcriptase on retroviral RNA templates is influenced by secondary structures both 5' and 3' of the catalytic site. Nucleic Acids Res. 1998 Jul 15;26(14):3433–3442. doi: 10.1093/nar/26.14.3433. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Helga-Maria C., Hammarskjöld M. L., Rekosh D. An intact TAR element and cytoplasmic localization are necessary for efficient packaging of human immunodeficiency virus type 1 genomic RNA. J Virol. 1999 May;73(5):4127–4135. doi: 10.1128/jvi.73.5.4127-4135.1999. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Hemmings-Mieszczak M., Steger G., Hohn T. Regulation of CaMV 35 S RNA translation is mediated by a stable hairpin in the leader. RNA. 1998 Jan;4(1):101–111. [PMC free article] [PubMed] [Google Scholar]
  37. Höglund S., Ohagen A., Goncalves J., Panganiban A. T., Gabuzda D. Ultrastructure of HIV-1 genomic RNA. Virology. 1997 Jul 7;233(2):271–279. doi: 10.1006/viro.1997.8585. [DOI] [PubMed] [Google Scholar]
  38. Isel C., Ehresmann C., Keith G., Ehresmann B., Marquet R. Initiation of reverse transcription of HIV-1: secondary structure of the HIV-1 RNA/tRNA(3Lys) (template/primer). J Mol Biol. 1995 Mar 24;247(2):236–250. doi: 10.1006/jmbi.1994.0136. [DOI] [PubMed] [Google Scholar]
  39. Jabri E., Cech T. R. In vitro selection of the Naegleria GIR1 ribozyme identifies three base changes that dramatically improve activity. RNA. 1998 Dec;4(12):1481–1492. doi: 10.1017/s1355838298981237. [DOI] [PMC free article] [PubMed] [Google Scholar]
  40. Ji X., Klarmann G. J., Preston B. D. Effect of human immunodeficiency virus type 1 (HIV-1) nucleocapsid protein on HIV-1 reverse transcriptase activity in vitro. Biochemistry. 1996 Jan 9;35(1):132–143. doi: 10.1021/bi951707e. [DOI] [PubMed] [Google Scholar]
  41. Klasens B. I., Das A. T., Berkhout B. Inhibition of polyadenylation by stable RNA secondary structure. Nucleic Acids Res. 1998 Apr 15;26(8):1870–1876. doi: 10.1093/nar/26.8.1870. [DOI] [PMC free article] [PubMed] [Google Scholar]
  42. Klasens B. I., Huthoff H. T., Das A. T., Jeeninga R. E., Berkhout B. The effect of template RNA structure on elongation by HIV-1 reverse transcriptase. Biochim Biophys Acta. 1999 Mar 19;1444(3):355–370. doi: 10.1016/s0167-4781(99)00011-1. [DOI] [PubMed] [Google Scholar]
  43. Klasens B. I., Thiesen M., Virtanen A., Berkhout B. The ability of the HIV-1 AAUAAA signal to bind polyadenylation factors is controlled by local RNA structure. Nucleic Acids Res. 1999 Jan 15;27(2):446–454. doi: 10.1093/nar/27.2.446. [DOI] [PMC free article] [PubMed] [Google Scholar]
  44. Klaver B., Berkhout B. Evolution of a disrupted TAR RNA hairpin structure in the HIV-1 virus. EMBO J. 1994 Jun 1;13(11):2650–2659. doi: 10.1002/j.1460-2075.1994.tb06555.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  45. Klaver B., Berkhout B. Premature strand transfer by the HIV-1 reverse transcriptase during strong-stop DNA synthesis. Nucleic Acids Res. 1994 Jan 25;22(2):137–144. doi: 10.1093/nar/22.2.137. [DOI] [PMC free article] [PubMed] [Google Scholar]
  46. Kulpa D., Topping R., Telesnitsky A. Determination of the site of first strand transfer during Moloney murine leukemia virus reverse transcription and identification of strand transfer-associated reverse transcriptase errors. EMBO J. 1997 Feb 17;16(4):856–865. doi: 10.1093/emboj/16.4.856. [DOI] [PMC free article] [PubMed] [Google Scholar]
  47. Laughrea M., Shen N., Jetté L., Wainberg M. A. Variant effects of non-native kissing-loop hairpin palindromes on HIV replication and HIV RNA dimerization: role of stem-loop B in HIV replication and HIV RNA dimerization. Biochemistry. 1999 Jan 5;38(1):226–234. doi: 10.1021/bi981728j. [DOI] [PubMed] [Google Scholar]
  48. Lenz C., Scheid A., Schaal H. Exon 1 leader sequences downstream of U5 are important for efficient human immunodeficiency virus type 1 gene expression. J Virol. 1997 Apr;71(4):2757–2764. doi: 10.1128/jvi.71.4.2757-2764.1997. [DOI] [PMC free article] [PubMed] [Google Scholar]
  49. Lever A., Gottlinger H., Haseltine W., Sodroski J. Identification of a sequence required for efficient packaging of human immunodeficiency virus type 1 RNA into virions. J Virol. 1989 Sep;63(9):4085–4087. doi: 10.1128/jvi.63.9.4085-4087.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  50. McBride M. S., Panganiban A. T. Position dependence of functional hairpins important for human immunodeficiency virus type 1 RNA encapsidation in vivo. J Virol. 1997 Mar;71(3):2050–2058. doi: 10.1128/jvi.71.3.2050-2058.1997. [DOI] [PMC free article] [PubMed] [Google Scholar]
  51. McBride M. S., Panganiban A. T. The human immunodeficiency virus type 1 encapsidation site is a multipartite RNA element composed of functional hairpin structures. J Virol. 1996 May;70(5):2963–2973. doi: 10.1128/jvi.70.5.2963-2973.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  52. Mikkelsen J. G., Lund A. H., Duch M., Pedersen F. S. Recombination in the 5' leader of murine leukemia virus is accurate and influenced by sequence identity with a strong bias toward the kissing-loop dimerization region. J Virol. 1998 Sep;72(9):6967–6978. doi: 10.1128/jvi.72.9.6967-6978.1998. [DOI] [PMC free article] [PubMed] [Google Scholar]
  53. Muesing M. A., Smith D. H., Cabradilla C. D., Benton C. V., Lasky L. A., Capon D. J. Nucleic acid structure and expression of the human AIDS/lymphadenopathy retrovirus. Nature. 1985 Feb 7;313(6002):450–458. doi: 10.1038/313450a0. [DOI] [PubMed] [Google Scholar]
  54. Mujeeb A., Clever J. L., Billeci T. M., James T. L., Parslow T. G. Structure of the dimer initiation complex of HIV-1 genomic RNA. Nat Struct Biol. 1998 Jun;5(6):432–436. doi: 10.1038/nsb0698-432. [DOI] [PubMed] [Google Scholar]
  55. Peden K., Emerman M., Montagnier L. Changes in growth properties on passage in tissue culture of viruses derived from infectious molecular clones of HIV-1LAI, HIV-1MAL, and HIV-1ELI. Virology. 1991 Dec;185(2):661–672. doi: 10.1016/0042-6822(91)90537-l. [DOI] [PubMed] [Google Scholar]
  56. Peliska J. A., Balasubramanian S., Giedroc D. P., Benkovic S. J. Recombinant HIV-1 nucleocapsid protein accelerates HIV-1 reverse transcriptase catalyzed DNA strand transfer reactions and modulates RNase H activity. Biochemistry. 1994 Nov 22;33(46):13817–13823. doi: 10.1021/bi00250a036. [DOI] [PubMed] [Google Scholar]
  57. Prats A. C., Sarih L., Gabus C., Litvak S., Keith G., Darlix J. L. Small finger protein of avian and murine retroviruses has nucleic acid annealing activity and positions the replication primer tRNA onto genomic RNA. EMBO J. 1988 Jun;7(6):1777–1783. doi: 10.1002/j.1460-2075.1988.tb03008.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  58. Puglisi J. D., Tan R., Calnan B. J., Frankel A. D., Williamson J. R. Conformation of the TAR RNA-arginine complex by NMR spectroscopy. Science. 1992 Jul 3;257(5066):76–80. doi: 10.1126/science.1621097. [DOI] [PubMed] [Google Scholar]
  59. Purcell D. F., Martin M. A. Alternative splicing of human immunodeficiency virus type 1 mRNA modulates viral protein expression, replication, and infectivity. J Virol. 1993 Nov;67(11):6365–6378. doi: 10.1128/jvi.67.11.6365-6378.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  60. Rizvi T. A., Panganiban A. T. Simian immunodeficiency virus RNA is efficiently encapsidated by human immunodeficiency virus type 1 particles. J Virol. 1993 May;67(5):2681–2688. doi: 10.1128/jvi.67.5.2681-2688.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  61. Seiki M., Hattori S., Hirayama Y., Yoshida M. Human adult T-cell leukemia virus: complete nucleotide sequence of the provirus genome integrated in leukemia cell DNA. Proc Natl Acad Sci U S A. 1983 Jun;80(12):3618–3622. doi: 10.1073/pnas.80.12.3618. [DOI] [PMC free article] [PubMed] [Google Scholar]
  62. SenGupta D. N., Berkhout B., Gatignol A., Zhou A. M., Silverman R. H. Direct evidence for translational regulation by leader RNA and Tat protein of human immunodeficiency virus type 1. Proc Natl Acad Sci U S A. 1990 Oct;87(19):7492–7496. doi: 10.1073/pnas.87.19.7492. [DOI] [PMC free article] [PubMed] [Google Scholar]
  63. Skripkin E., Paillart J. C., Marquet R., Ehresmann B., Ehresmann C. Identification of the primary site of the human immunodeficiency virus type 1 RNA dimerization in vitro. Proc Natl Acad Sci U S A. 1994 May 24;91(11):4945–4949. doi: 10.1073/pnas.91.11.4945. [DOI] [PMC free article] [PubMed] [Google Scholar]
  64. Sohail M., Akhtar S., Southern E. M. The folding of large RNAs studied by hybridization to arrays of complementary oligonucleotides. RNA. 1999 May;5(5):646–655. doi: 10.1017/s1355838299982195. [DOI] [PMC free article] [PubMed] [Google Scholar]
  65. Wakefield J. K., Wolf A. G., Morrow C. D. Human immunodeficiency virus type 1 can use different tRNAs as primers for reverse transcription but selectively maintains a primer binding site complementary to tRNA(3Lys). J Virol. 1995 Oct;69(10):6021–6029. doi: 10.1128/jvi.69.10.6021-6029.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  66. Walter F., Murchie A. I., Duckett D. R., Lilley D. M. Global structure of four-way RNA junctions studied using fluorescence resonance energy transfer. RNA. 1998 Jun;4(6):719–728. doi: 10.1017/s135583829898030x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  67. Wei P., Garber M. E., Fang S. M., Fischer W. H., Jones K. A. A novel CDK9-associated C-type cyclin interacts directly with HIV-1 Tat and mediates its high-affinity, loop-specific binding to TAR RNA. Cell. 1998 Feb 20;92(4):451–462. doi: 10.1016/s0092-8674(00)80939-3. [DOI] [PubMed] [Google Scholar]
  68. Whitcomb J. M., Ortiz-Conde B. A., Hughes S. H. Replication of avian leukosis viruses with mutations at the primer binding site: use of alternative tRNAs as primers. J Virol. 1995 Oct;69(10):6228–6238. doi: 10.1128/jvi.69.10.6228-6238.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  69. Wu M., Tinoco I., Jr RNA folding causes secondary structure rearrangement. Proc Natl Acad Sci U S A. 1998 Sep 29;95(20):11555–11560. doi: 10.1073/pnas.95.20.11555. [DOI] [PMC free article] [PubMed] [Google Scholar]
  70. You J. C., McHenry C. S. Human immunodeficiency virus nucleocapsid protein accelerates strand transfer of the terminally redundant sequences involved in reverse transcription. J Biol Chem. 1994 Dec 16;269(50):31491–31495. [PubMed] [Google Scholar]

Articles from RNA are provided here courtesy of The RNA Society

RESOURCES