Skip to main content
RNA logoLink to RNA
. 2000 Feb;6(2):296–306. doi: 10.1017/s1355838200992148

Mapping posttranscriptional modifications in 5S ribosomal RNA by MALDI mass spectrometry.

F Kirpekar 1, S Douthwaite 1, P Roepstorff 1
PMCID: PMC1369914  PMID: 10688367

Abstract

We present a method to screen RNA for posttranscriptional modifications based on Matrix Assisted Laser Desorption/Ionization mass spectrometry (MALDI-MS). After the RNA is digested to completion with a nucleotide-specific RNase, the fragments are analyzed by mass spectrometry. A comparison of the observed mass data with the data predicted from the gene sequence identifies fragments harboring modified nucleotides. Fragments larger than dinucleotides were valuable for the identification of posttranscriptional modifications. A more refined mapping of RNA modifications can be obtained by using two RNases in parallel combined with further fragmentation by Post Source Decay (PSD). This approach allows fast and sensitive screening of a purified RNA for posttranscriptional modification, and has been applied on 5S rRNA from two thermophilic microorganisms, the bacterium Bacillus stearothermophilus and the archaeon Sulfolobus acidocaldarius, as well as the halophile archaea Halobacterium halobium and Haloarcula marismortui. One S. acidocaldarius posttranscriptional modification was identified and was further characterized by PSD as a methylation of cytidine32. The modified C is located in a region that is clearly conserved with respect to both sequence and position in B. stearothermophilus and H. halobium and to some degree also in H. marismortui. However, no analogous modification was identified in the latter three organisms. We further find that the 5' end of H. halobium 5S rRNA is dephosphorylated, in contrast to the other 5S rRNA species investigated. The method additionally gives an immediate indication of whether the expected RNA sequence is in agreement with the observed fragment masses. Discrepancies with two of the published 5S rRNA sequences were identified and are reported here.

Full Text

The Full Text of this article is available as a PDF (695.1 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bakin A., Ofengand J. Four newly located pseudouridylate residues in Escherichia coli 23S ribosomal RNA are all at the peptidyltransferase center: analysis by the application of a new sequencing technique. Biochemistry. 1993 Sep 21;32(37):9754–9762. doi: 10.1021/bi00088a030. [DOI] [PubMed] [Google Scholar]
  2. Brock T. D., Brock K. M., Belly R. T., Weiss R. L. Sulfolobus: a new genus of sulfur-oxidizing bacteria living at low pH and high temperature. Arch Mikrobiol. 1972;84(1):54–68. doi: 10.1007/BF00408082. [DOI] [PubMed] [Google Scholar]
  3. Bruenger E., Kowalak J. A., Kuchino Y., McCloskey J. A., Mizushima H., Stetter K. O., Crain P. F. 5S rRNA modification in the hyperthermophilic archaea Sulfolobus solfataricus and Pyrodictium occultum. FASEB J. 1993 Jan;7(1):196–200. doi: 10.1096/fasebj.7.1.8422966. [DOI] [PubMed] [Google Scholar]
  4. Cundliffe E. On the nature of antibiotic binding sites in ribosomes. Biochimie. 1987 Aug;69(8):863–869. doi: 10.1016/0300-9084(87)90213-6. [DOI] [PubMed] [Google Scholar]
  5. Cunningham P. R., Richard R. B., Weitzmann C. J., Nurse K., Ofengand J. The absence of modified nucleotides affects both in vitro assembly and in vitro function of the 30S ribosomal subunit of Escherichia coli. Biochimie. 1991 Jun;73(6):789–796. doi: 10.1016/0300-9084(91)90058-9. [DOI] [PubMed] [Google Scholar]
  6. Dennis P. P., Ziesche S., Mylvaganam S. Transcription analysis of two disparate rRNA operons in the halophilic archaeon Haloarcula marismortui. J Bacteriol. 1998 Sep;180(18):4804–4813. doi: 10.1128/jb.180.18.4804-4813.1998. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Donis-Keller H., Maxam A. M., Gilbert W. Mapping adenines, guanines, and pyrimidines in RNA. Nucleic Acids Res. 1977 Aug;4(8):2527–2538. doi: 10.1093/nar/4.8.2527. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Donis-Keller H. Phy M: an RNase activity specific for U and A residues useful in RNA sequence analysis. Nucleic Acids Res. 1980 Jul 25;8(14):3133–3142. doi: 10.1093/nar/8.14.3133. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Douthwaite S., Christensen A., Garrett R. A. Binding site of ribosomal proteins on prokaryotic 5S ribonucleic acids: a study with ribonucleases. Biochemistry. 1982 May 11;21(10):2313–2320. doi: 10.1021/bi00539a007. [DOI] [PubMed] [Google Scholar]
  10. Durovic P., Kutay U., Schleper C., Dennis P. P. Strain identification and 5S rRNA gene characterization of the hyperthermophilic archaebacterium Sulfolobus acidocaldarius. J Bacteriol. 1994 Jan;176(2):514–517. doi: 10.1128/jb.176.2.514-517.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Felden B., Hanawa K., Atkins J. F., Himeno H., Muto A., Gesteland R. F., McCloskey J. A., Crain P. F. Presence and location of modified nucleotides in Escherichia coli tmRNA: structural mimicry with tRNA acceptor branches. EMBO J. 1998 Jun 1;17(11):3188–3196. doi: 10.1093/emboj/17.11.3188. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Green R., Noller H. F. In vitro complementation analysis localizes 23S rRNA posttranscriptional modifications that are required for Escherichia coli 50S ribosomal subunit assembly and function. RNA. 1996 Oct;2(10):1011–1021. [PMC free article] [PubMed] [Google Scholar]
  13. Green R., Noller H. F. Reconstitution of functional 50S ribosomes from in vitro transcripts of Bacillus stearothermophilus 23S rRNA. Biochemistry. 1999 Feb 9;38(6):1772–1779. doi: 10.1021/bi982246a. [DOI] [PubMed] [Google Scholar]
  14. Karas M., Hillenkamp F. Laser desorption ionization of proteins with molecular masses exceeding 10,000 daltons. Anal Chem. 1988 Oct 15;60(20):2299–2301. doi: 10.1021/ac00171a028. [DOI] [PubMed] [Google Scholar]
  15. Khaitovich P., Tenson T., Kloss P., Mankin A. S. Reconstitution of functionally active Thermus aquaticus large ribosomal subunits with in vitro-transcribed rRNA. Biochemistry. 1999 Feb 9;38(6):1780–1788. doi: 10.1021/bi9822473. [DOI] [PubMed] [Google Scholar]
  16. Khaitovich P., Tenson T., Mankin A. S., Green R. Peptidyl transferase activity catalyzed by protein-free 23S ribosomal RNA remains elusive. RNA. 1999 May;5(5):605–608. doi: 10.1017/s1355838299990295. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Kirpekar F., Nordhoff E., Kristiansen K., Roepstorff P., Lezius A., Hahner S., Karas M., Hillenkamp F. Matrix assisted laser desorption/ionization mass spectrometry of enzymatically synthesized RNA up to 150 kDa. Nucleic Acids Res. 1994 Sep 25;22(19):3866–3870. doi: 10.1093/nar/22.19.3866. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Kowalak J. A., Bruenger E., McCloskey J. A. Posttranscriptional modification of the central loop of domain V in Escherichia coli 23 S ribosomal RNA. J Biol Chem. 1995 Jul 28;270(30):17758–17764. doi: 10.1074/jbc.270.30.17758. [DOI] [PubMed] [Google Scholar]
  19. Kowalak J. A., Pomerantz S. C., Crain P. F., McCloskey J. A. A novel method for the determination of post-transcriptional modification in RNA by mass spectrometry. Nucleic Acids Res. 1993 Sep 25;21(19):4577–4585. doi: 10.1093/nar/21.19.4577. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Noller H. F., Hoffarth V., Zimniak L. Unusual resistance of peptidyl transferase to protein extraction procedures. Science. 1992 Jun 5;256(5062):1416–1419. doi: 10.1126/science.1604315. [DOI] [PubMed] [Google Scholar]
  21. Noon K. R., Bruenger E., McCloskey J. A. Posttranscriptional modifications in 16S and 23S rRNAs of the archaeal hyperthermophile Sulfolobus solfataricus. J Bacteriol. 1998 Jun;180(11):2883–2888. doi: 10.1128/jb.180.11.2883-2888.1998. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Nordhoff E., Ingendoh A., Cramer R., Overberg A., Stahl B., Karas M., Hillenkamp F., Crain P. F. Matrix-assisted laser desorption/ionization mass spectrometry of nucleic acids with wavelengths in the ultraviolet and infrared. Rapid Commun Mass Spectrom. 1992 Dec;6(12):771–776. doi: 10.1002/rcm.1290061212. [DOI] [PubMed] [Google Scholar]
  23. Peattie D. A. Direct chemical method for sequencing RNA. Proc Natl Acad Sci U S A. 1979 Apr;76(4):1760–1764. doi: 10.1073/pnas.76.4.1760. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Raychaudhuri S., Conrad J., Hall B. G., Ofengand J. A pseudouridine synthase required for the formation of two universally conserved pseudouridines in ribosomal RNA is essential for normal growth of Escherichia coli. RNA. 1998 Nov;4(11):1407–1417. doi: 10.1017/s1355838298981146. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Rozenski J., Crain P. F., McCloskey J. A. The RNA Modification Database: 1999 update. Nucleic Acids Res. 1999 Jan 1;27(1):196–197. doi: 10.1093/nar/27.1.196. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Sirum-Connolly K., Mason T. L. Functional requirement of a site-specific ribose methylation in ribosomal RNA. Science. 1993 Dec 17;262(5141):1886–1889. doi: 10.1126/science.8266080. [DOI] [PubMed] [Google Scholar]
  27. Skinner R., Cundliffe E., Schmidt F. J. Site of action of a ribosomal RNA methylase responsible for resistance to erythromycin and other antibiotics. J Biol Chem. 1983 Oct 25;258(20):12702–12706. [PubMed] [Google Scholar]
  28. Spengler B., Kirsch D., Kaufmann R., Jaeger E. Peptide sequencing by matrix-assisted laser-desorption mass spectrometry. Rapid Commun Mass Spectrom. 1992 Feb;6(2):105–108. doi: 10.1002/rcm.1290060207. [DOI] [PubMed] [Google Scholar]
  29. Stern S., Moazed D., Noller H. F. Structural analysis of RNA using chemical and enzymatic probing monitored by primer extension. Methods Enzymol. 1988;164:481–489. doi: 10.1016/s0076-6879(88)64064-x. [DOI] [PubMed] [Google Scholar]
  30. Thompson J., Schmidt F., Cundliffe E. Site of action of a ribosomal RNA methylase conferring resistance to thiostrepton. J Biol Chem. 1982 Jul 25;257(14):7915–7917. [PubMed] [Google Scholar]
  31. Weisblum B. Erythromycin resistance by ribosome modification. Antimicrob Agents Chemother. 1995 Mar;39(3):577–585. doi: 10.1128/AAC.39.3.577. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Zimmermann J., Erdmann V. A. Binding sites of E. coli and B. stearothermophilus ribosomal proteins on B stearothermophilus 5S RNA. Nucleic Acids Res. 1978 Jul;5(7):2267–2288. doi: 10.1093/nar/5.7.2267. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from RNA are provided here courtesy of The RNA Society

RESOURCES