Skip to main content
RNA logoLink to RNA
. 2000 Mar;6(3):311–324. doi: 10.1017/s135583820099215x

An unusual structure formed by antisense-target RNA binding involves an extended kissing complex with a four-way junction and a side-by-side helical alignment.

F A Kolb 1, C Malmgren 1, E Westhof 1, C Ehresmann 1, B Ehresmann 1, E G Wagner 1, P Romby 1
PMCID: PMC1369915  PMID: 10744017

Abstract

The antisense RNA CopA binds to the leader region of the repA mRNA (target: CopT). Previous studies on CopA-CopT pairing in vitro showed that the dominant product of antisense RNA-mRNA binding is not a full RNA duplex. We have studied here the structure of CopA-CopT complex, combining chemical and enzymatic probing and computer graphic modeling. CopI, a truncated derivative of CopA unable to bind CopT stably, was also analyzed. We show here that after initial loop-loop interaction (kissing), helix propagation resulted in an extended kissing complex that involves the formation of two intermolecular helices. By introducing mutations (base-pair inversions) into the upper stem regions of CopA and CopT, the boundaries of the two newly formed intermolecular helices were delimited. The resulting extended kissing complex represents a new type of four-way junction structure that adopts an asymmetrical X-shaped conformation formed by two helical domains, each one generated by coaxial stacking of two helices. This structure motif induces a side-by-side alignment of two long intramolecular helices that, in turn, facilitates the formation of an additional intermolecular helix that greatly stabilizes the inhibitory CopA-CopT RNA complex. This stabilizer helix cannot form in CopI-CopT complexes due to absence of the sequences involved. The functional significance of the three-dimensional models of the extended kissing complex (CopI-CopT) and the stable complex (CopA-CopT) are discussed.

Full Text

The Full Text of this article is available as a PDF (976.9 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Asano K., Mizobuchi K. An RNA pseudoknot as the molecular switch for translation of the repZ gene encoding the replication initiator of IncIalpha plasmid ColIb-P9. J Biol Chem. 1998 May 8;273(19):11815–11825. doi: 10.1074/jbc.273.19.11815. [DOI] [PubMed] [Google Scholar]
  2. Asano K., Niimi T., Yokoyama S., Mizobuchi K. Structural basis for binding of the plasmid ColIb-P9 antisense Inc RNA to its target RNA with the 5'-rUUGGCG-3' motif in the loop sequence. J Biol Chem. 1998 May 8;273(19):11826–11838. doi: 10.1074/jbc.273.19.11826. [DOI] [PubMed] [Google Scholar]
  3. Blomberg P., Engdahl H. M., Malmgren C., Romby P., Wagner E. G. Replication control of plasmid R1: disruption of an inhibitory RNA structure that sequesters the repA ribosome-binding site permits tap-independent RepA synthesis. Mol Microbiol. 1994 Apr;12(1):49–60. doi: 10.1111/j.1365-2958.1994.tb00994.x. [DOI] [PubMed] [Google Scholar]
  4. Blomberg P., Nordström K., Wagner E. G. Replication control of plasmid R1: RepA synthesis is regulated by CopA RNA through inhibition of leader peptide translation. EMBO J. 1992 Jul;11(7):2675–2683. doi: 10.1002/j.1460-2075.1992.tb05333.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Blomberg P., Wagner E. G., Nordström K. Control of replication of plasmid R1: the duplex between the antisense RNA, CopA, and its target, CopT, is processed specifically in vivo and in vitro by RNase III. EMBO J. 1990 Jul;9(7):2331–2340. doi: 10.1002/j.1460-2075.1990.tb07405.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Cate J. H., Gooding A. R., Podell E., Zhou K., Golden B. L., Kundrot C. E., Cech T. R., Doudna J. A. Crystal structure of a group I ribozyme domain: principles of RNA packing. Science. 1996 Sep 20;273(5282):1678–1685. doi: 10.1126/science.273.5282.1678. [DOI] [PubMed] [Google Scholar]
  7. Chen X., Woodson S. A., Burrows C. J., Rokita S. E. A highly sensitive probe for guanine N7 in folded structures of RNA: application to tRNA(Phe) and Tetrahymena group I intron. Biochemistry. 1993 Aug 3;32(30):7610–7616. doi: 10.1021/bi00081a002. [DOI] [PubMed] [Google Scholar]
  8. Donis-Keller H., Maxam A. M., Gilbert W. Mapping adenines, guanines, and pyrimidines in RNA. Nucleic Acids Res. 1977 Aug;4(8):2527–2538. doi: 10.1093/nar/4.8.2527. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Earnshaw D. J., Masquida B., Müller S., Sigurdsson S. T., Eckstein F., Westhof E., Gait M. J. Inter-domain cross-linking and molecular modelling of the hairpin ribozyme. J Mol Biol. 1997 Nov 28;274(2):197–212. doi: 10.1006/jmbi.1997.1405. [DOI] [PubMed] [Google Scholar]
  10. Eguchi Y., Itoh T., Tomizawa J. Antisense RNA. Annu Rev Biochem. 1991;60:631–652. doi: 10.1146/annurev.bi.60.070191.003215. [DOI] [PubMed] [Google Scholar]
  11. Eguchi Y., Tomizawa J. Complexes formed by complementary RNA stem-loops. Their formations, structures and interaction with ColE1 Rom protein. J Mol Biol. 1991 Aug 20;220(4):831–842. doi: 10.1016/0022-2836(91)90356-b. [DOI] [PubMed] [Google Scholar]
  12. Ehresmann C., Baudin F., Mougel M., Romby P., Ebel J. P., Ehresmann B. Probing the structure of RNAs in solution. Nucleic Acids Res. 1987 Nov 25;15(22):9109–9128. doi: 10.1093/nar/15.22.9109. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. England T. E., Uhlenbeck O. C. 3'-terminal labelling of RNA with T4 RNA ligase. Nature. 1978 Oct 12;275(5680):560–561. doi: 10.1038/275560a0. [DOI] [PubMed] [Google Scholar]
  14. Haga Y., Dumitrescu A., Zhang Y., Stain-Malmgren R., Sjöquist P. O. Effects of calcium blockers on the cytosolic calcium, H2O2 production and elastase release in human neutrophils. Pharmacol Toxicol. 1996 Dec;79(6):312–317. doi: 10.1111/j.1600-0773.1996.tb00015.x. [DOI] [PubMed] [Google Scholar]
  15. Hermann T., Westhof E. Exploration of metal ion binding sites in RNA folds by Brownian-dynamics simulations. Structure. 1998 Oct 15;6(10):1303–1314. doi: 10.1016/s0969-2126(98)00130-0. [DOI] [PubMed] [Google Scholar]
  16. Hjalt T. A., Wagner E. G. Bulged-out nucleotides protect an antisense RNA from RNase III cleavage. Nucleic Acids Res. 1995 Feb 25;23(4):571–579. doi: 10.1093/nar/23.4.571. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Hjalt T., Wagner E. G. The effect of loop size in antisense and target RNAs on the efficiency of antisense RNA control. Nucleic Acids Res. 1992 Dec 25;20(24):6723–6732. doi: 10.1093/nar/20.24.6723. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Kittle J. D., Simons R. W., Lee J., Kleckner N. Insertion sequence IS10 anti-sense pairing initiates by an interaction between the 5' end of the target RNA and a loop in the anti-sense RNA. J Mol Biol. 1989 Dec 5;210(3):561–572. doi: 10.1016/0022-2836(89)90132-0. [DOI] [PubMed] [Google Scholar]
  19. Krol A., Westhof E., Bach M., Lührmann R., Ebel J. P., Carbon P. Solution structure of human U1 snRNA. Derivation of a possible three-dimensional model. Nucleic Acids Res. 1990 Jul 11;18(13):3803–3811. doi: 10.1093/nar/18.13.3803. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Latham J. A., Cech T. R. Defining the inside and outside of a catalytic RNA molecule. Science. 1989 Jul 21;245(4915):276–282. doi: 10.1126/science.2501870. [DOI] [PubMed] [Google Scholar]
  21. Lee A. J., Crothers D. M. The solution structure of an RNA loop-loop complex: the ColE1 inverted loop sequence. Structure. 1998 Aug 15;6(8):993–1005. doi: 10.1016/s0969-2126(98)00101-4. [DOI] [PubMed] [Google Scholar]
  22. Malmgren C., Engdahl H. M., Romby P., Wagner E. G. An antisense/target RNA duplex or a strong intramolecular RNA structure 5' of a translation initiation signal blocks ribosome binding: the case of plasmid R1. RNA. 1996 Oct;2(10):1022–1032. [PMC free article] [PubMed] [Google Scholar]
  23. Malmgren C., Wagner E. G., Ehresmann C., Ehresmann B., Romby P. Antisense RNA control of plasmid R1 replication. The dominant product of the antisense rna-mrna binding is not a full RNA duplex. J Biol Chem. 1997 May 9;272(19):12508–12512. doi: 10.1074/jbc.272.19.12508. [DOI] [PubMed] [Google Scholar]
  24. Marino J. P., Gregorian R. S., Jr, Csankovszki G., Crothers D. M. Bent helix formation between RNA hairpins with complementary loops. Science. 1995 Jun 9;268(5216):1448–1454. doi: 10.1126/science.7539549. [DOI] [PubMed] [Google Scholar]
  25. Massire C., Gaspin C., Westhof E. DRAWNA: a program for drawing schematic views of nucleic acids. J Mol Graph. 1994 Sep;12(3):201-6, 196. doi: 10.1016/0263-7855(94)80088-x. [DOI] [PubMed] [Google Scholar]
  26. Massire C., Westhof E. MANIP: an interactive tool for modelling RNA. J Mol Graph Model. 1998 Aug-Dec;16(4-6):197-205, 255-7. doi: 10.1016/s1093-3263(98)80004-1. [DOI] [PubMed] [Google Scholar]
  27. Nowakowski J., Shim P. J., Prasad G. S., Stout C. D., Joyce G. F. Crystal structure of an 82-nucleotide RNA-DNA complex formed by the 10-23 DNA enzyme. Nat Struct Biol. 1999 Feb;6(2):151–156. doi: 10.1038/5839. [DOI] [PubMed] [Google Scholar]
  28. Ohman M., Wagner E. G. Secondary structure analysis of the RepA mRNA leader transcript involved in control of replication of plasmid R1. Nucleic Acids Res. 1989 Apr 11;17(7):2557–2579. doi: 10.1093/nar/17.7.2557. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Peattie D. A., Gilbert W. Chemical probes for higher-order structure in RNA. Proc Natl Acad Sci U S A. 1980 Aug;77(8):4679–4682. doi: 10.1073/pnas.77.8.4679. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Persson C., Wagner E. G., Nordström K. Control of replication of plasmid R1: formation of an initial transient complex is rate-limiting for antisense RNA--target RNA pairing. EMBO J. 1990 Nov;9(11):3777–3785. doi: 10.1002/j.1460-2075.1990.tb07591.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Persson C., Wagner E. G., Nordström K. Control of replication of plasmid R1: kinetics of in vitro interaction between the antisense RNA, CopA, and its target, CopT. EMBO J. 1988 Oct;7(10):3279–3288. doi: 10.1002/j.1460-2075.1988.tb03195.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Persson C., Wagner E. G., Nordström K. Control of replication of plasmid R1: structures and sequences of the antisense RNA, CopA, required for its binding to the target RNA, CopT. EMBO J. 1990 Nov;9(11):3767–3775. doi: 10.1002/j.1460-2075.1990.tb07590.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Serganov A., Rak A., Garber M., Reinbolt J., Ehresmann B., Ehresmann C., Grunberg-Manago M., Portier C. Ribosomal protein S15 from Thermus thermophilus--cloning, sequencing, overexpression of the gene and RNA-binding properties of the protein. Eur J Biochem. 1997 Jun 1;246(2):291–300. doi: 10.1111/j.1432-1033.1997.00291.x. [DOI] [PubMed] [Google Scholar]
  34. Siemering K. R., Praszkier J., Pittard A. J. Mechanism of binding of the antisense and target RNAs involved in the regulation of IncB plasmid replication. J Bacteriol. 1994 May;176(9):2677–2688. doi: 10.1128/jb.176.9.2677-2688.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Söderbom F., Binnie U., Masters M., Wagner E. G. Regulation of plasmid R1 replication: PcnB and RNase E expedite the decay of the antisense RNA, CopA. Mol Microbiol. 1997 Nov;26(3):493–504. doi: 10.1046/j.1365-2958.1997.5871953.x. [DOI] [PubMed] [Google Scholar]
  36. Thisted T., Sørensen N. S., Wagner E. G., Gerdes K. Mechanism of post-segregational killing: Sok antisense RNA interacts with Hok mRNA via its 5'-end single-stranded leader and competes with the 3'-end of Hok mRNA for binding to the mok translational initiation region. EMBO J. 1994 Apr 15;13(8):1960–1968. doi: 10.1002/j.1460-2075.1994.tb06465.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Tomizawa J. Control of ColE1 plasmid replication. Interaction of Rom protein with an unstable complex formed by RNA I and RNA II. J Mol Biol. 1990 Apr 20;212(4):695–708. doi: 10.1016/0022-2836(90)90231-a. [DOI] [PubMed] [Google Scholar]
  38. Wagner E. G., Blomberg P., Nordström K. Replication control in plasmid R1: duplex formation between the antisense RNA, CopA, and its target, CopT, is not required for inhibition of RepA synthesis. EMBO J. 1992 Mar;11(3):1195–1203. doi: 10.1002/j.1460-2075.1992.tb05160.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  39. Wagner E. G., Brantl S. Kissing and RNA stability in antisense control of plasmid replication. Trends Biochem Sci. 1998 Dec;23(12):451–454. doi: 10.1016/s0968-0004(98)01322-x. [DOI] [PubMed] [Google Scholar]
  40. Wagner E. G., Simons R. W. Antisense RNA control in bacteria, phages, and plasmids. Annu Rev Microbiol. 1994;48:713–742. doi: 10.1146/annurev.mi.48.100194.003433. [DOI] [PubMed] [Google Scholar]
  41. Walter F., Murchie A. I., Lilley D. M. Folding of the four-way RNA junction of the hairpin ribozyme. Biochemistry. 1998 Dec 15;37(50):17629–17636. doi: 10.1021/bi9821115. [DOI] [PubMed] [Google Scholar]
  42. Walter F., Murchie A. I., Thomson J. B., Lilley D. M. Structure and activity of the hairpin ribozyme in its natural junction conformation: effect of metal ions. Biochemistry. 1998 Oct 6;37(40):14195–14203. doi: 10.1021/bi981513+. [DOI] [PubMed] [Google Scholar]
  43. Weeks K. M., Crothers D. M. Major groove accessibility of RNA. Science. 1993 Sep 17;261(5128):1574–1577. doi: 10.1126/science.7690496. [DOI] [PubMed] [Google Scholar]
  44. Westhof E., Romby P., Romaniuk P. J., Ebel J. P., Ehresmann C., Ehresmann B. Computer modeling from solution data of spinach chloroplast and of Xenopus laevis somatic and oocyte 5 S rRNAs. J Mol Biol. 1989 May 20;207(2):417–431. doi: 10.1016/0022-2836(89)90264-7. [DOI] [PubMed] [Google Scholar]
  45. Wilson I. W., Praszkier J., Pittard A. J. Mutations affecting pseudoknot control of the replication of B group plasmids. J Bacteriol. 1993 Oct;175(20):6476–6483. doi: 10.1128/jb.175.20.6476-6483.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from RNA are provided here courtesy of The RNA Society

RESOURCES