Skip to main content
RNA logoLink to RNA
. 2000 Mar;6(3):339–351. doi: 10.1017/s1355838200991210

RNA motifs mediating in vivo site-specific nonhomologous recombination in (+) RNA virus enforce in vitro nonhomologous crossovers with HIV-1 reverse transcriptase.

M Figlerowicz 1, A Bibiłło 1
PMCID: PMC1369917  PMID: 10744019

Abstract

There are several lines of evidence that both RNA viruses and retroviruses recombine according to a copy choice mechanism. Using the brome mosaic virus (BMV)-based system, we recognized elements in the RNA structure that enhance nonhomologous crossovers within or near the local heteroduplex formed by recombining molecules. The same structural motifs were employed in vitro to test the ability of human immunodeficiency virus reverse transcriptase (HIV-RT) to switch templates during DNA synthesis. We demonstrated that a specific combination of the local double-stranded region with short homologous sequences and a hairpin structure allows template switching by HIV-RT. In contrast to BMV replicase, HIV-RT does not mediate the detectable level of recombination using only the heteroduplex structure, though local hybridization between RNA molecules efficiently pauses primer extension. Moreover, the presented data suggest that a proper arrangement of identified structural motifs can ensure site specificity of RNA-RNA recombination. These results indicate that HIV-RT utilizes the same or a very similar mechanism as BMV replicase to change nonhomologous RNA templates in a site-specific manner.

Full Text

The Full Text of this article is available as a PDF (515.5 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Ahlquist P. Bromovirus RNA replication and transcription. Curr Opin Genet Dev. 1992 Feb;2(1):71–76. doi: 10.1016/s0959-437x(05)80325-9. [DOI] [PubMed] [Google Scholar]
  2. Bujarski J. J., Dzianott A. M. Generation and analysis of nonhomologous RNA-RNA recombinants in brome mosaic virus: sequence complementarities at crossover sites. J Virol. 1991 Aug;65(8):4153–4159. doi: 10.1128/jvi.65.8.4153-4159.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Bujarski J. J., Nagy P. D., Flasinski S. Molecular studies of genetic RNA-RNA recombination in brome mosaic virus. Adv Virus Res. 1994;43:275–302. doi: 10.1016/S0065-3527(08)60051-2. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Chen Z., Hirano A., Wong T. C. Isolation and characterization of intranuclear ribonucleoprotein complexes associated with double-stranded RNA adenosine deaminase from brain cells: implications for RNA-editing and hypermutation of viral RNA in the CNS. J Neurovirol. 1995 Sep;1(3-4):295–306. doi: 10.3109/13550289509114026. [DOI] [PubMed] [Google Scholar]
  5. Eigen M. On the nature of virus quasispecies. Trends Microbiol. 1996 Jun;4(6):216–218. doi: 10.1016/0966-842X(96)20011-3. [DOI] [PubMed] [Google Scholar]
  6. Figlerowicz M., Bujarski J. J. Rekombinacja genetyczna (+) RNA wirusów. Postepy Biochem. 1997;43(4):257–266. [PubMed] [Google Scholar]
  7. Figlerowicz M., Nagy P. D., Tang N., Kao C. C., Bujarski J. J. Mutations in the N terminus of the brome mosaic virus polymerase affect genetic RNA-RNA recombination. J Virol. 1998 Nov;72(11):9192–9200. doi: 10.1128/jvi.72.11.9192-9200.1998. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Gilboa E., Mitra S. W., Goff S., Baltimore D. A detailed model of reverse transcription and tests of crucial aspects. Cell. 1979 Sep;18(1):93–100. doi: 10.1016/0092-8674(79)90357-x. [DOI] [PubMed] [Google Scholar]
  9. Greene A. E., Allison R. F. Recombination between viral RNA and transgenic plant transcripts. Science. 1994 Mar 11;263(5152):1423–1425. doi: 10.1126/science.8128222. [DOI] [PubMed] [Google Scholar]
  10. Hajjar A. M., Linial M. L. Modification of retroviral RNA by double-stranded RNA adenosine deaminase. J Virol. 1995 Sep;69(9):5878–5882. doi: 10.1128/jvi.69.9.5878-5882.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Harrison G. P., Mayo M. S., Hunter E., Lever A. M. Pausing of reverse transcriptase on retroviral RNA templates is influenced by secondary structures both 5' and 3' of the catalytic site. Nucleic Acids Res. 1998 Jul 15;26(14):3433–3442. doi: 10.1093/nar/26.14.3433. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Holland J., Spindler K., Horodyski F., Grabau E., Nichol S., VandePol S. Rapid evolution of RNA genomes. Science. 1982 Mar 26;215(4540):1577–1585. doi: 10.1126/science.7041255. [DOI] [PubMed] [Google Scholar]
  13. Khatchikian D., Orlich M., Rott R. Increased viral pathogenicity after insertion of a 28S ribosomal RNA sequence into the haemagglutinin gene of an influenza virus. Nature. 1989 Jul 13;340(6229):156–157. doi: 10.1038/340156a0. [DOI] [PubMed] [Google Scholar]
  14. Kim J. K., Palaniappan C., Wu W., Fay P. J., Bambara R. A. Evidence for a unique mechanism of strand transfer from the transactivation response region of HIV-1. J Biol Chem. 1997 Jul 4;272(27):16769–16777. doi: 10.1074/jbc.272.27.16769. [DOI] [PubMed] [Google Scholar]
  15. Kim T., Mudry R. A., Jr, Rexrode C. A., 2nd, Pathak V. K. Retroviral mutation rates and A-to-G hypermutations during different stages of retroviral replication. J Virol. 1996 Nov;70(11):7594–7602. doi: 10.1128/jvi.70.11.7594-7602.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Kirkegaard K., Baltimore D. The mechanism of RNA recombination in poliovirus. Cell. 1986 Nov 7;47(3):433–443. doi: 10.1016/0092-8674(86)90600-8. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Klarmann G. J., Schauber C. A., Preston B. D. Template-directed pausing of DNA synthesis by HIV-1 reverse transcriptase during polymerization of HIV-1 sequences in vitro. J Biol Chem. 1993 May 5;268(13):9793–9802. [PubMed] [Google Scholar]
  18. Lai M. M. RNA recombination in animal and plant viruses. Microbiol Rev. 1992 Mar;56(1):61–79. doi: 10.1128/mr.56.1.61-79.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Meyers G., Tautz N., Dubovi E. J., Thiel H. J. Viral cytopathogenicity correlated with integration of ubiquitin-coding sequences. Virology. 1991 Feb;180(2):602–616. doi: 10.1016/0042-6822(91)90074-L. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Nagy P. D., Bujarski J. J. Efficient system of homologous RNA recombination in brome mosaic virus: sequence and structure requirements and accuracy of crossovers. J Virol. 1995 Jan;69(1):131–140. doi: 10.1128/jvi.69.1.131-140.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Nagy P. D., Bujarski J. J. Genetic recombination in brome mosaic virus: effect of sequence and replication of RNA on accumulation of recombinants. J Virol. 1992 Nov;66(11):6824–6828. doi: 10.1128/jvi.66.11.6824-6828.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Nagy P. D., Bujarski J. J. Targeting the site of RNA-RNA recombination in brome mosaic virus with antisense sequences. Proc Natl Acad Sci U S A. 1993 Jul 15;90(14):6390–6394. doi: 10.1073/pnas.90.14.6390. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Nagy P. D., Dzianott A., Ahlquist P., Bujarski J. J. Mutations in the helicase-like domain of protein 1a alter the sites of RNA-RNA recombination in brome mosaic virus. J Virol. 1995 Apr;69(4):2547–2556. doi: 10.1128/jvi.69.4.2547-2556.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Nagy P. D., Zhang C., Simon A. E. Dissecting RNA recombination in vitro: role of RNA sequences and the viral replicase. EMBO J. 1998 Apr 15;17(8):2392–2403. doi: 10.1093/emboj/17.8.2392. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Pathak V. K., Temin H. M. Broad spectrum of in vivo forward mutations, hypermutations, and mutational hotspots in a retroviral shuttle vector after a single replication cycle: deletions and deletions with insertions. Proc Natl Acad Sci U S A. 1990 Aug;87(16):6024–6028. doi: 10.1073/pnas.87.16.6024. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Pathak V. K., Temin H. M. Broad spectrum of in vivo forward mutations, hypermutations, and mutational hotspots in a retroviral shuttle vector after a single replication cycle: substitutions, frameshifts, and hypermutations. Proc Natl Acad Sci U S A. 1990 Aug;87(16):6019–6023. doi: 10.1073/pnas.87.16.6019. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Romanova L. I., Blinov V. M., Tolskaya E. A., Viktorova E. G., Kolesnikova M. S., Guseva E. A., Agol V. I. The primary structure of crossover regions of intertypic poliovirus recombinants: a model of recombination between RNA genomes. Virology. 1986 Nov;155(1):202–213. doi: 10.1016/0042-6822(86)90180-7. [DOI] [PubMed] [Google Scholar]
  28. Smith D. B., Inglis S. C. The mutation rate and variability of eukaryotic viruses: an analytical review. J Gen Virol. 1987 Nov;68(Pt 11):2729–2740. doi: 10.1099/0022-1317-68-11-2729. [DOI] [PubMed] [Google Scholar]
  29. Steinhauer D. A., Holland J. J. Rapid evolution of RNA viruses. Annu Rev Microbiol. 1987;41:409–433. doi: 10.1146/annurev.mi.41.100187.002205. [DOI] [PubMed] [Google Scholar]
  30. Stuhlmann H., Berg P. Homologous recombination of copackaged retrovirus RNAs during reverse transcription. J Virol. 1992 Apr;66(4):2378–2388. doi: 10.1128/jvi.66.4.2378-2388.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Wu W., Blumberg B. M., Fay P. J., Bambara R. A. Strand transfer mediated by human immunodeficiency virus reverse transcriptase in vitro is promoted by pausing and results in misincorporation. J Biol Chem. 1995 Jan 6;270(1):325–332. doi: 10.1074/jbc.270.1.325. [DOI] [PubMed] [Google Scholar]
  32. Zhang J., Temin H. M. Rate and mechanism of nonhomologous recombination during a single cycle of retroviral replication. Science. 1993 Jan 8;259(5092):234–238. doi: 10.1126/science.8421784. [DOI] [PubMed] [Google Scholar]
  33. Zhang J., Temin H. M. Retrovirus recombination depends on the length of sequence identity and is not error prone. J Virol. 1994 Apr;68(4):2409–2414. doi: 10.1128/jvi.68.4.2409-2414.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Zhang X., Lai M. M. Unusual heterogeneity of leader-mRNA fusion in a murine coronavirus: implications for the mechanism of RNA transcription and recombination. J Virol. 1994 Oct;68(10):6626–6633. doi: 10.1128/jvi.68.10.6626-6633.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Zheng H., Fu T. B., Lazinski D., Taylor J. Editing on the genomic RNA of human hepatitis delta virus. J Virol. 1992 Aug;66(8):4693–4697. doi: 10.1128/jvi.66.8.4693-4697.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. von Hippel P. H. An integrated model of the transcription complex in elongation, termination, and editing. Science. 1998 Jul 31;281(5377):660–665. doi: 10.1126/science.281.5377.660. [DOI] [PubMed] [Google Scholar]

Articles from RNA are provided here courtesy of The RNA Society

RESOURCES